Topographic optical profilometry of steep slope micro-optical transparent surfaces

Loading...
Thumbnail Image
Full text at PDC
Publication date

2015

Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
The Optical Society Of America
Citations
Google Scholar
Citation
- K. P. Thompson and J. P. Rolland, “A revolution in imaging optical design,” Opt. Photon. News 23, 31–35 (2012). - J. Schmit, K. Creath, and J. C. Wyant, “Surface profilers, multiple wavelength, and white light interferometry,” in: Optical Shop Testing. Malacara D., editor (John Wiley & Sons Inc., 2007), pp. 667–755. - B. Xu, Z. Jia, X. Li, Y.-L. Chen, Y. Shimizu, S. Ito, and W. Gao, “Surface form metrology of micro-optics,” Proc. SPIE 8769, 876902 (2013). - A. Ettemeyer, “Optical 3D testing of micro structures,” Proc. SPIE 7997, 79971S (2010). - A. Ettemeyer, “New three-dimensional fiber probe for multisensory coordinate measurement,” Opt. Eng. 51(8), 081502 (2012). - L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33(31), 7334–7338 (1994). - J. C. Wyant, “Advances in interferometric surface measurement,” Proc. SPIE 6024, 602401 (2006). - C. C. Lai and I. J. Hsu, “Surface profilometry with composite interferometer,” Opt. Express 15(21), 13949–13956 (2007). - C. Zhao, J. Tan, J. Tang, T. Liu, and J. Liu, “Confocal simultaneous phase-shifting interferometry,” Appl. Opt. 50(5), 655–661 (2011). - C. H. Lee, H. Y. Mong, and W. C. Lin, “Noninterferometric wide-field optical profilometry with nanometer depth resolution,” Opt. Lett. 27(20), 1773–1775 (2002). - P. Lehmann, J. Niehues, W. Xie, and J. Riebeling, “Measurements of rectangular edge and grating structures using extended low-coherence interferometry,” Proc. SPIE 8430, 84300U (2012). - J. Niehues and P. Lehmann, “Improvement of lateral resolution and reduction of batwings in vertical scanning white-light interferometry,” Proc. SPIE 8082, 80820W (2011). - F. Mauch, W. Lyda, M. Gronle, and W. Osten, “Object depending artifacts in confocal measurements,” Proc. SPIE 8466, 846609 (2012). - J. Seewig, I. Raid, C. Wiehr, and B. A. George, “Robust evaluation of intensity curves measured by confocal microscopies,” Proc. SPIE 8788, 87880T (2013). - F. Mauch, W. Lyda, and W. Osten, “Model-based assistance system for confocal measurements of rough surfaces,” Proc. SPIE 8788, 87880U (2013). - F. Mauch, W. Lyda, M. Gronle, and W. Osten, “Improved signal model for confocal sensors accounting for object depending artifacts,” Opt. Express 20(18), 19936–19945 (2012). - P. Lehmann, W. Xie, P. Kühnhold, and J. Niehues, “Interferometric measurement of functional surfaces,” Proc. SPIE 8769, 876904 (2013). - R. Mandal, J. Coupland, R. Leach, and D. Mansfield, “Coherence scanning interferometry: measurement and correction of three-dimensional transfer and point-spread characteristics,” Appl. Opt. 53(8), 1554–1563 (2014). - J. M. Coupland and J. Lobera, “Measurement of Steep Surfaces Using White Light Interferometry,” Strain 46(1), 69–78 (2010). - J. C. Martínez Antón, “Three-dimensional profilometer based on optical absorption in fluids,” patent application WO2013011172 (2011). - J. C. Martínez Antón, J. A. Gómez Pedrero, J. Alonso Fernández, and J. A. Quiroga, “Optical method for the surface topographic characterization of Fresnel lenses,” Proc. SPIE 8169, 816910 (2011). - J. C. Antón, J. Alonso, J. A. Pedrero, and J. A. Quiroga, “Topographic optical profilometry by absorption in liquids,” Opt. Express 20(27), 28631–28640 (2012). - J. C. Martínez Antón, J. M. Plaza Ortega, and J. Alonso, “3D-form metrology of arbitrary optical surfaces by absorption in fluids,” Proc. SPIE 8884, 888413 (2013). - M. A. Model and E. Schonbrun, “Optical determination of intracellular water in apoptotic cells,” J. Physiol. 591(23), 5843–5849 (2013). - M. Pluta, Advanced Light Microscopy (Elsevier, 1988), Vol.1, p.464. - I. T. Young, R. Zagers, L. J. van Vliet, J. Mullikin, F. Boddeke, and H. Netten, “Depth-of-focus in microscopy,” in Proceedings SCIA’93 (8th Scandinavian Conference on Image Analysis), Tromso, Norway, 1993, pp.493–498. - V. Borovytsky and A. Fesenko, “Diffraction depth of focus in optical microscope,” Proc. SPIE vol. 7786, 77860X (2010). - Y. Tan and H. Chen, “Diffraction of transmission light through triangular apertures in array of retro-reflective microprisms,” Appl. Opt. 51(16), 3403–3409 (2012). - D. Vázquez-Moliní, A. Álvarez Fernández-Balbuena, and B. García-Fernandez, “Natural lighting systems based on dielectric prismatic Film”, in Dielectric Material, Alexandru Silaghi M., Ed. (Intech, 2012), pp. 155–180.
Abstract
Optical profilometers based on light reflection may fail at surfaces presenting steep slopes and highly curved features. Missed light, interference and diffraction at steps, peaks and valleys are some of the reasons. Consequently, blind areas or profile artifacts may be observed when using common reflection micro-optical profilometers (confocal, scanning interferometers, etc…). The Topographic Optical Profilometry by Absorption in Fluids (TOPAF) essentially avoids these limitations. In this technique an absorbing fluid fills the gap between a reference surface and the surface to profile. By comparing transmission images at two different spectral bands we obtain a reliable topographic map of the surface. In this contribution we develop a model to obtain the profile under micro-optical observation, where high numerical aperture (NA) objectives are mandatory. We present several analytical and experimental results, validating the technique’s capabilities for profiling steep slopes and highly curved micro-optical surfaces with nanometric height resolution.
Research Projects
Organizational Units
Journal Issue
Description
En Open Access en la web del editor.
Keywords
Collections