Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A note on the dissolution of spherical crystals

Loading...
Thumbnail Image

Full text at PDC

Publication date

2001

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge University Press
Citations
Google Scholar

Citation

Abstract

We consider here the radial Stefan problem with Gibbs-Thomson law, which is a classical model describing growth or melting of a spherical crystal in a surrounding liquid. We shall specialize to the cases of two and three space dimensions and discuss the asymptotic behaviour of a melting crystal near its dissolution time t(*)>0. We prove here that, when the interface shrinks monotonically, the asymptotics near t=t(*) is of the form R(t)~(3σ(t(*)-t))(1/3), u(r,t)~-σ/r for r~R(t), r>R(t). Here, R(t) denotes the radius of the crystal, σ is a surface tension parameter and u(r,t) represents the field temperature. An important point to be noticed is that (*) exhibits no dependence on the space dimension N, in sharp contrast with results known for the case σ = 0.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections