Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A note on the dissolution of spherical crystals

dc.contributor.authorHerraiz, Luis A.
dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T17:08:36Z
dc.date.available2023-06-20T17:08:36Z
dc.date.issued2001-04
dc.description.abstractWe consider here the radial Stefan problem with Gibbs-Thomson law, which is a classical model describing growth or melting of a spherical crystal in a surrounding liquid. We shall specialize to the cases of two and three space dimensions and discuss the asymptotic behaviour of a melting crystal near its dissolution time t(*)>0. We prove here that, when the interface shrinks monotonically, the asymptotics near t=t(*) is of the form R(t)~(3σ(t(*)-t))(1/3), u(r,t)~-σ/r for r~R(t), r>R(t). Here, R(t) denotes the radius of the crystal, σ is a surface tension parameter and u(r,t) represents the field temperature. An important point to be noticed is that (*) exhibits no dependence on the space dimension N, in sharp contrast with results known for the case σ = 0.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17881
dc.identifier.doi10.1017/S0308210500000913
dc.identifier.issn0308-2105
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1201356
dc.identifier.relatedurlhttp://journals.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57836
dc.issue.number2
dc.journal.titleProceedings of the Royal Society of Edinburgh: Section A Mathematics
dc.language.isoeng
dc.page.final389
dc.page.initial371
dc.publisherCambridge University Press
dc.rights.accessRightsrestricted access
dc.subject.cdu517.956.4
dc.subject.cdu539.2
dc.subject.keywordAsymptotic behaviour
dc.subject.keywordStefan problem with Gibbs-Thomson law
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleA note on the dissolution of spherical crystals
dc.typejournal article
dc.volume.number131
dcterms.referencesM. Abramowitz and I. A. Stegun. Handbook of mathematical functions (New York: Dover, 1970). B. Caroli, C. Caroli and B. Roulet. Instabilities of planar solidification fronts. In Solids far from equilibrium (ed. C. Godrèche), pp. 155–296. (Cambridge University Press, 1992). A. Friedman. Partial differential equations of parabolic type (Malabar, FL: Robert Krieger, 1983). M. A. Herrero and J. J. L. Velázquez. On the melting of ice balls. SIAM J. Math. Analysis 28 (1997), 1–32. O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uraltseva. Linear and quasilinear equations of parabolic type, Transl. Mathematical Monographs, vol. 23 (Providence, RI: American Mathematical Society, 1968). D. G. Schaeffer. A new proof of the infinite differentiability of the solution of the free boundary in the Stefan problem. J. Diff. Eqns 20 (1976), 266–269. B. Sherman. A general one-phase Stefan problem. Q. Appl. Math. 28 (1970), 377–383.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero22.pdf
Size:
171.61 KB
Format:
Adobe Portable Document Format

Collections