Structure of Whittaker groups and applications to conformal involutions on handlebodies
Loading...
Download
Full text at PDC
Publication date
2010
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science
Citation
Abstract
The geometrically finite complete hyperbolic Riemannian metrics in the interior of a handlebody of genus g, having injectivity radius bounded away from zero, are exactly those produced by Schottky groups of rank g; these are called Schottky structures. A Whittakergroup of rank g is by definition a Kleinian groupK containing, as an index two subgroup, a Schottky groupΓ of rank g. In this case, K corresponds exactly to a conformalinvolution on the handlebody with Schottky structure given by Γ. In this paper we provide a structural description of Whittakergroups and, as a consequence of this, we obtain some facts concerning conformalinvolutions on handlebodies. For instance, we give a formula to count the type and the number of connected components of the set of fixed points of a conformalinvolution of a handlebody with a Schottky structure in terms of a group of automorphisms containing the conformalinvolution.