Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Structure of Whittaker groups and applications to conformal involutions on handlebodies

Loading...
Thumbnail Image

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science
Citations
Google Scholar

Citation

Abstract

The geometrically finite complete hyperbolic Riemannian metrics in the interior of a handlebody of genus g, having injectivity radius bounded away from zero, are exactly those produced by Schottky groups of rank g; these are called Schottky structures. A Whittakergroup of rank g is by definition a Kleinian groupK containing, as an index two subgroup, a Schottky groupΓ of rank g. In this case, K corresponds exactly to a conformalinvolution on the handlebody with Schottky structure given by Γ. In this paper we provide a structural description of Whittakergroups and, as a consequence of this, we obtain some facts concerning conformalinvolutions on handlebodies. For instance, we give a formula to count the type and the number of connected components of the set of fixed points of a conformalinvolution of a handlebody with a Schottky structure in terms of a group of automorphisms containing the conformalinvolution.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections