Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Structure of Whittaker groups and applications to conformal involutions on handlebodies

dc.contributor.authorDíaz Sánchez, Raquel
dc.contributor.authorGarijo, Ignacio
dc.contributor.authorHidalgo, Rubén A.
dc.contributor.authorGromadzki, G.
dc.date.accessioned2023-06-20T00:12:59Z
dc.date.available2023-06-20T00:12:59Z
dc.date.issued2010
dc.description.abstractThe geometrically finite complete hyperbolic Riemannian metrics in the interior of a handlebody of genus g, having injectivity radius bounded away from zero, are exactly those produced by Schottky groups of rank g; these are called Schottky structures. A Whittakergroup of rank g is by definition a Kleinian groupK containing, as an index two subgroup, a Schottky groupΓ of rank g. In this case, K corresponds exactly to a conformalinvolution on the handlebody with Schottky structure given by Γ. In this paper we provide a structural description of Whittakergroups and, as a consequence of this, we obtain some facts concerning conformalinvolutions on handlebodies. For instance, we give a formula to count the type and the number of connected components of the set of fixed points of a conformalinvolution of a handlebody with a Schottky structure in terms of a group of automorphisms containing the conformalinvolution.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMEC, DGI
dc.description.sponsorshipPolish Ministry of Sciences and Higher Education
dc.description.sponsorshipProjects Fondecyt
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15716
dc.identifier.doi10.1016/j.topol.2010.07.001
dc.identifier.issn0166-8641
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0166864110001987
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42213
dc.issue.number15
dc.journal.titleTopology and its Applications
dc.language.isoeng
dc.page.final2361
dc.page.initial2347
dc.publisherElsevier Science
dc.relation.projectIDMTM 2006-14688
dc.relation.projectIDNN 201 366436
dc.relation.projectIDFondecyt 1070271
dc.relation.projectIDUTFSM 12.09.02
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.keywordGroup actions in low dimensions
dc.subject.keywordFuchsian groups and their generalizations
dc.subject.ucmGeometría
dc.subject.unesco1204 Geometría
dc.titleStructure of Whittaker groups and applications to conformal involutions on handlebodies
dc.typejournal article
dc.volume.number157
dcterms.referencesI. Agol, Tameness of hyperbolic 3-manifolds, arXiv:math.GT/0405568, 2004. L. Bers, Automorphic forms for Schottky groups, Adv. in Math. 16 (1975) 332–361. D. Calegari, D. Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2) (2006) 385–446 G. Gromadzki, R.A. Hidalgo, B. Maskit, Symmetries of handlebodies with Schottky structures, preprint, 2008. R.A. Hidalgo, The mixed elliptically fixed point property for Kleinian groups, Ann. Acad. Sci. Fenn. 19 (1994) 247–258. R.A. Hidalgo, Cyclic extensions of Schottky uniformizations, Ann. Acad. Sci. Fenn. 29 (2004) 329–344 R.A. Hidalgo, Dihedral groups are of Schottky type, Revista Proyecciones 18 (1) (1999) 23–48. R.A. Hidalgo, On Γ -hyperelliptic Schottky groups, Notas Soc. Mat. Chile (1) 8 (1989) 27–36. J. Kalliongis, A. Miller, Equivalence and strong equivalence of actions on handlebodies, Trans. Amer. Math. Soc. 308 (2) (1988) 721–745 J. Kania-Bartoszynska, Involutions on 2-handlebodies, in: Transformation Groups, Poznań, 1985, in: Lecture Notes in Math., vol. 1217, 1986, pp. 151–166 L. Keen, On hyperelliptic Schottky groups, Ann. Acad. Sci. Fenn. Math. 5 (1980) 165–174. L. Keen, J. Gilman, The geometry of two generator groups: Hyperelliptic handlebodies, Geometriae Dedicata 110 (2005) 159–190. S. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983) 235–265. P. Koebe, Über die Uniformisierung der Algebraischen Kurven II, Math. Ann. 69 (1910) 1–81. B. Maskit, Kleinian Groups, GMW, Springer-Verlag, 1987. B. Maskit, A characterization of Schottky groups, J. Anal. Math. 19 (1967) 227–230. B. Maskit, On Klein's combination theorem IV, Trans. Amer. Math. Soc. 336 (1993) 265–294. B. Maskit, A theorem on planar covering surfaces with applications to 3-manifolds, Ann. of Math. (2) 81 (1965) 341–355. W.H. Meeks III, S.-T. Yau, Topology of three-dimensional manifolds and the embedding problem in minimal surface theory, Ann. of Math. (2) 112 (1980) 441–484. A. Pantaleoni, R. Piergallini, Involutions of 3-dimensional handlebodies, arXiv:0806.0904v2. M. Reni, B. Zimmermann, Extending finite group actions from surfaces to handlebodies, Proc. Amer. Math. Soc. 124 (9) (1996) 2877–2887 B. Zimmermann, Über Homöomorphismen n -dimensionaler Henkelkörper und endliche Erweiterungen von Schottky-Gruppen (On homeomorphisms of n -dimensional handlebodies and on finite extensions of Schottky groups), Comment. Math. Helv. 56 (3) (1981) 474–486 (in German).
dspace.entity.typePublication
relation.isAuthorOfPublicationad6ca69d-67a0-4e6d-9177-6a5439e93ce3
relation.isAuthorOfPublication.latestForDiscoveryad6ca69d-67a0-4e6d-9177-6a5439e93ce3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DiazRaquel07.pdf
Size:
393.65 KB
Format:
Adobe Portable Document Format

Collections