On divisibility in shape theory.

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

1994

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Editorial Complutense
Citations
Google Scholar

Citation

Abstract

Given two shape morphisms F,G:X→Y , where X and Y are compacta, one declares F to be a divisor of G provided for any compactum Z and any shape morphism U:X→Z if F factors as F=F 1 ∘U , then G factors as G=G 1 ∘U . On the other hand, if Sh(X,Y) is a group, then F being a divisor of G ought to mean that G=mF for some integer m . In particular, if Y=S n is the n -sphere, then Sh(X,S n )=[X,S n ] can be given the structure of a group (the n th cohomotopy group) if the shape dimension of X is at most 2n−1 . Here is the main result of the paper. Theorem. If F,G:X→S n and the shape dimension of X is at most n , then F is the divisor of G iff G=mF for some integer m in the n th cohomotopy group of X.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords