On divisibility in shape theory.

dc.book.titleContribuciones matemáticas: Libro-homenaje al Profesor D. José Javier Etayo Miqueo
dc.contributor.authorLaguna, V. F.
dc.contributor.authorRodríguez Sanjurjo, José Manuel
dc.date.accessioned2023-06-20T21:07:01Z
dc.date.available2023-06-20T21:07:01Z
dc.date.issued1994
dc.description.abstractGiven two shape morphisms F,G:X→Y , where X and Y are compacta, one declares F to be a divisor of G provided for any compactum Z and any shape morphism U:X→Z if F factors as F=F 1 ∘U , then G factors as G=G 1 ∘U . On the other hand, if Sh(X,Y) is a group, then F being a divisor of G ought to mean that G=mF for some integer m . In particular, if Y=S n is the n -sphere, then Sh(X,S n )=[X,S n ] can be given the structure of a group (the n th cohomotopy group) if the shape dimension of X is at most 2n−1 . Here is the main result of the paper. Theorem. If F,G:X→S n and the shape dimension of X is at most n , then F is the divisor of G iff G=mF for some integer m in the n th cohomotopy group of X.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21886
dc.identifier.isbn84-7491-510-4
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60725
dc.page.final243
dc.page.initial239
dc.page.total482
dc.publication.placeMadrid
dc.publisherEditorial Complutense
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.143
dc.subject.keyworddivisibility in shape theory
dc.subject.keyworddivisibility of mappings
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn divisibility in shape theory.
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublicationf54f1d9d-37e9-4c15-9d97-e34a6343e575
relation.isAuthorOfPublication.latestForDiscoveryf54f1d9d-37e9-4c15-9d97-e34a6343e575

Download