Transformation matrices for the Mueller–Jones formalism

dc.contributor.authorEspinosa Luna, Rafael
dc.contributor.authorRodríguez Carrera, David
dc.contributor.authorHinojosa Ruiz, Sinhué Lizandro
dc.contributor.authorBernabeu Martínez, Eusebio
dc.date.accessioned2023-06-20T10:45:30Z
dc.date.available2023-06-20T10:45:30Z
dc.date.issued2008
dc.description© 2007 Elsevier GmbH. One of the authors, R.E.L., expresses his gratitude to CONACYT (Project 46969-F), to CONCYTEG (05-04-K117-066-A02) and to Grupo Santander (Program Visitantes Distinguidos at the Universidad Complutense de Madrid) for the support provided for the realization of this work.
dc.description.abstractThe Mueller–Jones (MJ) or pure Mueller matrix formulation has been reported by using two different matrix transformations in a condensed representation. The possibility to find other transformation matrices is explored. A complete set of unitary operators (R) is found to be closely related with the MJ matrices and with the evolution of pure states on the Poincaré sphere surface. We propose an alternative deduction for the condensed representation of the MJ matrices, obtained by using the Kronecker product operation and use of R unitary matrices as a tool to combine different Mueller matrices and changes of polarized states on the Poincarè sphere surface. Finally, it is shown explicitly that the columns of the transformation matrices are the eigenvectors of the MJ matrix associated to a non-depolarizing optical system and a corollary is established as a criterion to differentiate a Mueller matrix from an MJ matrix.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología (CONACYT), México
dc.description.sponsorshipConsejo de Ciencia y Tecnologia del Estado de Guanajuato (CONCYTEG), México
dc.description.sponsorshipGrupo Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26279
dc.identifier.doi10.1016/j.ijleo.2007.03.008
dc.identifier.issn0030-4026
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.ijleo.2007.03.008
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51161
dc.issue.number16
dc.journal.titleOptik
dc.language.isoeng
dc.page.final765
dc.page.initial757
dc.publisherGustav Fischer Verlag
dc.relation.projectID46969-F
dc.relation.projectID05-04- K117-066-A02
dc.relation.projectIDProgram Visitantes Distinguidos at the Universidad Complutense de Madrid)
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordScattering
dc.subject.keywordDepolarization
dc.subject.keywordSurfaces
dc.subject.keywordElements
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleTransformation matrices for the Mueller–Jones formalism
dc.typejournal article
dc.volume.number119
dcterms.references[1] R. Barakat Bilinear constraints between elements of the 4×4 Mueller–Jones transfer matrix of polarization optics Opt. Commun., 38 (1981), pp. 159–161 [2] E.S. Fry, G.W. Kattawar Relationships between elements of the Stokes matrix Appl. Opt., 20 (1981), pp. 2811–2814 [3] R. Simon The connection between Mueller and Jones matrices of polarization optics Opt. Commun., 42 (1982), pp. 293–297 [4] J.J. Gil, E. Bernabeu A depolarization criterion in Mueller matrices Opt. Acta, 32 (1985), pp. 259–261 [5] J.W. Hovenier Structure of a general pure Mueller matrix Appl. Opt., 33 (1994), pp. 8318–8324 [6] C. Brosseau, C.R. Givens, A.B. Kotinski Generalized trace condition on the Mueller–Jones polarization matrix JOSA Commun., 10 (1993), pp. 2248–2251 [7] R.E. Luna, S.E. Acosta-Ortiz, L.-F. Zou Mueller matrix for characterization of one-dimensional rough perfectly reflecting surfaces in a conical configuration Opt. Lett., 23 (1998), pp. 1075–1077 [8] J.J. Gil Characteristic properties of Mueller matrices J. Opt. Soc. Am. A, 17 (2000), pp. 328–334 [9] A.G. Borovoi, I. Grishin Scattering matrices for large ice crystal particles J. Opt. Soc. Am. A, 20 (2003), pp. 2071–2080 [10] H.C. van de Hulst Light Scattering by Small Particles Dover, New York (1957) [11] E.L. O′Neill Introduction to Statistical Optics Addisson-Wesley, Reading, Mass (1963) [12] R.M.A. Azzam, N.M. Bashara Ellipsometry and Polarized Light North-Holland, Amsterdam (1989) [13] C. Brosseau Fundamentals of Polarized Light: Statistical Optics Approach Wiley, New York (1998) [14] S. Huard Polarisation de la Lumiere Masson, Paris (1994) 33pp. [15] N. Grier, Parke III, Matrix Optics, Ph.D. Thesis, MIT Press, Cambridge, MA, 1948. [16] E. Wolf, Il Nuovo Cimento, Ser 10, 13 (1959) 1165. [17] R.W. Schmieder Stokes—algebra formalism J. Opt. Soc. Am., 59 (1969), pp. 297–302 [18] F.M. Kronz, J.T. Tiehen Emergence and quantum mechanics Philos. Sci., 69 (2002), pp. 314–347 [19] B.J. DeBoo, J.M. Sasian, R.A. Chipman Depolarization of diffusely reflecting man-made objects Appl. Opt., 44 (2005), pp. 5434–5445 [20] E. Wolfe, R.A. Chipman Polarimetric characterization of liquid-crystal-on-silicon panels Appl. Opt., 45 (2006), pp. 1688–1703 [21] K.A. O′Donnell, M.E. Knotts Polarization dependence of scattering from one-dimensional rough surfaces J. Opt. Soc. Am. A, 8 (1991), pp. 1126–1131 [22] N.C. Bruce, A.J. Sant, J.C. Dainty, The Mueller matrix for rough surface scattering using the Kirchhoff approximation, Opt. Commun. 88 (1992) 471.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bernabeu,E34.pdf
Size:
195.27 KB
Format:
Adobe Portable Document Format

Collections