Linear and semilinear higher order parabolic equations in R-N
Loading...
Download
Full text at PDC
Publication date
2010
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Abstract
In this paper we consider some fourth order linear and semilinear equations in R-N and make a detailed study of the solvability of the Cauchy problem. For the linear equation we consider some weakly integrable potential terms, and for any 1 < p < infinity prove that for a suitable family of Bessel potential spaces, H-p(alpha) (R-N), the linear equation defines a strongly continuous analytic semigroup.
Using this result, we prove that the nonlinear problems we consider can be solved for initial data in L-p(RN) and in H-p(2) (R-N). We also find the corresponding critical exponents, that is, the largest growth allowed for the nonlinear terms for these classes of initial data.