Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Linear and semilinear higher order parabolic equations in R-N

dc.contributor.authorRodríguez Bernal, Aníbal
dc.contributor.authorCholewa, Jan W.
dc.date.accessioned2023-06-20T00:22:29Z
dc.date.available2023-06-20T00:22:29Z
dc.date.issued2010-01
dc.description.abstractIn this paper we consider some fourth order linear and semilinear equations in R-N and make a detailed study of the solvability of the Cauchy problem. For the linear equation we consider some weakly integrable potential terms, and for any 1 < p < infinity prove that for a suitable family of Bessel potential spaces, H-p(alpha) (R-N), the linear equation defines a strongly continuous analytic semigroup. Using this result, we prove that the nonlinear problems we consider can be solved for initial data in L-p(RN) and in H-p(2) (R-N). We also find the corresponding critical exponents, that is, the largest growth allowed for the nonlinear terms for these classes of initial data.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.sponsorshipUCM, Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17660
dc.identifier.doi10.1016/j.na.2011.08.022
dc.identifier.issn0362-546X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0362546X1100575X
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42474
dc.issue.number1
dc.journal.titleNonlinear Analysis: Theory, Methods & Applications
dc.language.isoeng
dc.page.final210
dc.page.initial194
dc.publisherElsevier
dc.relation.projectIDGR58/08 Grupo 920894
dc.relation.projectIDMTM2009-07540
dc.rights.accessRightsrestricted access
dc.subject.cdu517.986
dc.subject.keywordInterpolation spaces
dc.subject.keywordFractional powers of operators
dc.subject.keywordAnalytic semigroups
dc.subject.keywordInitial value problems for higher order parabolic equations
dc.subject.keywordSemilinear parabolic equations
dc.subject.keywordCritical exponents
dc.subject.keywordCritical Nonlinearities
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleLinear and semilinear higher order parabolic equations in R-N
dc.typejournal article
dc.volume.number75
dcterms.referencesH. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Veb Deutscher, Berlin, 1978. J.M. Arrieta, J.W. Cholewa, T. Dlotko, A. Rodriguez-Bernal, Linear parabolic equations in locally uniform spaces, Math. Models Methods Appl. Sci. 14 (2004) 253–294. T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal. 58 (1975) 181–205. H. Amann, M. Hieber, G. Simonnett, Bounded H∞ calculus for elliptic operators, Differential Integral Equations 7 (1994) 613–653. H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Basel, 1995. D. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, vol. 840, Springer, Berlin, 1981. A.N. Carvalho, J.W. Cholewa, Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Anal. Appl. 310 (2005) 557–578. J.M. Arrieta, A.N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier–Stokes and heat equations, Trans. Amer. Math. Soc. 352 (2000) 285–310. J.W. Cholewa, A. Rodriguez-Bernal, Dissipative mechanism of a semilinear higher order parabolic equation in RN . Serie de Prepublicaciones del Departamento de Matematica Aplicada, U. Complutense, MA-UCM 2011-13. http://www.mat.ucm.es/deptos/ma. H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966) 285–346. J.W. Cholewa, T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000. A. Rodriguez-Bernal, Perturbation of analytic semigroups in scales of Banach spaces and applications to parabolic equations with low regularity data, SEMA J. 53 (2011) 3–54. J.M. Arrieta, J.W. Cholewa, T. Dlotko, A. Rodriguez-Bernal, Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains, Nonlinear Anal. TMA 56 (2004) 515–554. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983
dspace.entity.typePublication
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscoveryfb7ac82c-5148-4dd1-b893-d8f8612a1b08

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodBernal04.pdf
Size:
353.89 KB
Format:
Adobe Portable Document Format

Collections