Robust fitting of Zernike polynomials to noisy point clouds defined over connected domains of arbitrary shape

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
The Optical Society Of America
Google Scholar
Research Projects
Organizational Units
Journal Issue
A new method for fitting a series of Zernike polynomials to point clouds defined over connected domains of arbitrary shape defined within the unit circle is presented in this work. The method is based on the application of machine learning fitting techniques by constructing an extended training set in order to ensure the smooth variation of local curvature over the whole domain. Therefore this technique is best suited for fitting points corresponding to ophthalmic lenses surfaces, particularly progressive power ones, in non-regular domains. We have tested our method by fitting numerical and real surfaces reaching an accuracy of 1 micron in elevation and 0.1 D in local curvature in agreement with the customary tolerances in the ophthalmic manufacturing industry.
En abierto en la web del editor. Received 7 Oct 2015; revised 4 Feb 2016; accepted 9 Feb 2016; published 9 Mar 2016 © 2016 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.
1. W. Wang, H. Pottmann, and Y. Liu, “Fitting B-spline curves to point clouds by curvature-based squared distance minimization,” ACM Trans. Graph. 25(2), 214–238 (2006). 2. S. Flöry, “Fitting curves and surfaces to point clouds in the presence of obstacles,” Comput. Aided Geom. Des. 26(2), 192–202 (2009). 3. F. Remondino, “From point cloud to surface: the modelling and visualization problem,” in International Workshop on Visualization and Animation of Reality-Based 3D Models, (2003). 4. J. G. Hayes and J. Halliday, “The least-squares fitting of cubic spline surfaces to general data sets,” IMA J. Appl. Math. 14(1), 89–103 (1974). 5. P. Dierkx, Curve and Surface Fitting with Splines (Oxford University, 1993). 6. P. Bo, R. Ling, and W. Wang, “A revisit to fitting parametric surfaces to point cloud,” Comput. Graph. 36(5), 534–540 (2012). 7. M. Ares and S. Royo, “Comparison of cubic B-spline and Zernike-fitting techniques in complex wavefront reconstruction,” Appl. Opt. 45(27), 6954–6964 (2006). 8. D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48(1), 87–95 (2001). 9. M. K. Smolek and S. D. Klyce, “Zernike polynomial fitting fails to represent all visually significant corneal aberrations,” Invest. Ophthalmol. Vis. Sci. 44(11), 4676–4681 (2003). 10. V. Mahajan, “Zernike annular polynomials for imaging systems with annular pupils,” J. Opt. Soc. Am. 71(1), 75–85 (1981). 11. J. A. Díaz and R. Navarro, “Orthonormal polynomials for elliptical wavefronts with an arbitrary orientation,” Appl. Opt. 53(10), 2051–2057 (2014). 12. G. M. Dai, “Wavefront reconstruction from slope data within pupils of arbitrary shapes using iterative Fourier Transform,” Open Opt. J. 1(1), 1–3 (2007). 13. K. P. Murphy, Machine Learning a Probabilistic Perspective (Massachusetts Institute of Technology, 2012). 14. A. E. Hoerl and R. W. Kennard, “Ridge regression: biased estimation for nonorthogonal problems,” Technometrics 12(1), 55–67 (1970). 15. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004). 16. M. M. Lipschutz, Differential Geometry (McGraw Hill, 1970).