A note on invariant operators of the Weyl algebra (Russian)
Loading...
Official URL
Full text at PDC
Publication date
2008
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Institut Matematiki MON RK (Ministerstvo Obrazovaniya i Nauki Respubliki Kazakhstan)
Citation
Abstract
Let L be a finite-dimensional complex Lie algebra with a basis X1,…,Xn and L∗ the dual space with a dual basis x1,…,xn. Suppose that [Xi,Xj]=∑kckijXk. Then there exists a (co)representation
Xi↦∑k,jckijxk∂∂xj of L in the space of analytic functions on L∗. A function F is invariant if Xi∘F(x1,…,xn)=∑k,jckijxk∂∂xjF(x1,…,xn).
In the case of a pseudo-orthogonal algebra Iso(p,q) the author finds a maximal algebraically independent system of invariants C1,…,Cm consisting of Casimir operators where m=[p+q−12]. It is shown that invariants of the Weyl algebra W(p,q) have the form IJ−1, where I and J are invariants for Iso(p,q).
Description
Escrito en ruso