Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A note on invariant operators of the Weyl algebra (Russian)

dc.contributor.authorCampoamor Stursberg, Otto-Rudwig
dc.date.accessioned2023-06-20T10:36:28Z
dc.date.available2023-06-20T10:36:28Z
dc.date.issued2008
dc.descriptionEscrito en ruso
dc.description.abstractLet L be a finite-dimensional complex Lie algebra with a basis X1,…,Xn and L∗ the dual space with a dual basis x1,…,xn. Suppose that [Xi,Xj]=∑kckijXk. Then there exists a (co)representation Xi↦∑k,jckijxk∂∂xj of L in the space of analytic functions on L∗. A function F is invariant if Xi∘F(x1,…,xn)=∑k,jckijxk∂∂xjF(x1,…,xn). In the case of a pseudo-orthogonal algebra Iso(p,q) the author finds a maximal algebraically independent system of invariants C1,…,Cm consisting of Casimir operators where m=[p+q−12]. It is shown that invariants of the Weyl algebra W(p,q) have the form IJ−1, where I and J are invariants for Iso(p,q).en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22226
dc.identifier.issn1682-0525
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50750
dc.issue.number3(29)
dc.journal.titleMatematicheskiĭ Zhurnal. Mathematical Journal
dc.page.final51
dc.page.initial46
dc.publisherInstitut Matematiki MON RK (Ministerstvo Obrazovaniya i Nauki Respubliki Kazakhstan)
dc.rights.accessRightsmetadata only access
dc.subject.cdu512
dc.subject.keywordCoadjoint orbits
dc.subject.keywordNilpotent varieties
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleA note on invariant operators of the Weyl algebra (Russian)en
dc.typejournal article
dc.volume.number8
dspace.entity.typePublication
relation.isAuthorOfPublication72801982-9f3c-4db0-b765-6e7b4aa2221b
relation.isAuthorOfPublication.latestForDiscovery72801982-9f3c-4db0-b765-6e7b4aa2221b

Download

Collections