A note on invariant operators of the Weyl algebra (Russian)
dc.contributor.author | Campoamor Stursberg, Otto-Rudwig | |
dc.date.accessioned | 2023-06-20T10:36:28Z | |
dc.date.available | 2023-06-20T10:36:28Z | |
dc.date.issued | 2008 | |
dc.description | Escrito en ruso | |
dc.description.abstract | Let L be a finite-dimensional complex Lie algebra with a basis X1,…,Xn and L∗ the dual space with a dual basis x1,…,xn. Suppose that [Xi,Xj]=∑kckijXk. Then there exists a (co)representation Xi↦∑k,jckijxk∂∂xj of L in the space of analytic functions on L∗. A function F is invariant if Xi∘F(x1,…,xn)=∑k,jckijxk∂∂xjF(x1,…,xn). In the case of a pseudo-orthogonal algebra Iso(p,q) the author finds a maximal algebraically independent system of invariants C1,…,Cm consisting of Casimir operators where m=[p+q−12]. It is shown that invariants of the Weyl algebra W(p,q) have the form IJ−1, where I and J are invariants for Iso(p,q). | en |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22226 | |
dc.identifier.issn | 1682-0525 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50750 | |
dc.issue.number | 3(29) | |
dc.journal.title | Matematicheskiĭ Zhurnal. Mathematical Journal | |
dc.page.final | 51 | |
dc.page.initial | 46 | |
dc.publisher | Institut Matematiki MON RK (Ministerstvo Obrazovaniya i Nauki Respubliki Kazakhstan) | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 512 | |
dc.subject.keyword | Coadjoint orbits | |
dc.subject.keyword | Nilpotent varieties | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | A note on invariant operators of the Weyl algebra (Russian) | en |
dc.type | journal article | |
dc.volume.number | 8 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 72801982-9f3c-4db0-b765-6e7b4aa2221b | |
relation.isAuthorOfPublication.latestForDiscovery | 72801982-9f3c-4db0-b765-6e7b4aa2221b |