Particle production from nonlocal gravitational effective action

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this paper we show how the nonlocal effective action for gravity, obtained after integrating out the matter fields, can be used to compute particle production and spectra for different space-time metrics. Applying this technique to several examples, we End that the perturbative calculation of the effective action up to second order in curvatures yields exactly the same results for the total number of particles as the Bogolyubov transformations method, in the case of massless scaler fields propagating in a Robertson-Walker space-time. Using an adiabatic approximation we also obtain the corresponding spectra and compare the results with the traditional WKB approximation. [S0556-2821(99)02920-3].
©1999 The American Physical Society. A.L.M acknowledges support from SEUID-Royal Society. This work has been partially supported by Ministerio de Educación y Ciencia (Spain) CICYT (AEN96-1634).
Unesco subjects
[1] L. Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994); Phys. Rev. D 56, 3258 (1997). [2] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Rep. 215, 203 (1992); Y. Shtanov, J. Traschen, and R. Branderberger, Phys. Rev. D 51, 5438 (1995). [3] L. P. Grishchuk, Zh. Eksp. Teor. Fiz. 67, 825 (1975) [Sov. Phys. JETP 40, 409 (1975)]; L. P. Grishchuk, Ann. N.Y. Acad. Sci. 302, 439 (1977). [4] M. R. de Garcia Maia and J. D. Barrow, Phys. Rev. D 50, 6262 (1994). [5] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, England, 1982). [6] A. Dobado, A. Gómez-Nicola, A. L. Maroto, and J. R. Peláez, Effective Lagrangians for the Standard Model (Springer-Verlag, Berlin, 1997). [7] J. B. Hartle and B. L. Hu, Phys. Rev. D 20, 1772 (1979); 21, 2756 (1980). [8] J. Schwinger, Phys. Rev. 82, 664 (1951). [9] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936). [10] L. Parker, in Recent Developments in Gravitation, Cargese 1978, edited by M. Le´vy and S. Deser (Plenum, New York, 1978). [11] S. Deser, M. J. Duff, and C. J. Isham, Nucl. Phys. B111, 45 (1976). [12] A. O. Barvinsky and G. A. Vilkovisky, Nucl. Phys. B282, 163 (1987); B333, 471 (1990); B333, 512 (1990); A. O. Barvinsky, Yu. V. Gusev, G. A. Vilkovisky, and V. V. Zhytnikov, ibid., B439, 561 (1995). [13]I. G. Avramidi, Nucl. Phys. B355, 712 (1991). [14] A. Dobado and A. L. Maroto, hep-th/9712198. [15] S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972). [16] L. Parker, Phys. Rev. Lett. 21, 562 (1968); Phys. Rev. 183, 1057 (1969); Asymptotic Structure of Space-Time, edited by F. P. Esposito and L. Witten (Plenum, New York, 1977). [17] L. Parker and A. Raval, Phys. Rev. D 57, 7327 (1998). [18] L. Parker, Nature (London) 261, 20 (1976). [19] Y. B. Zel’dovich and A. A. Starobinski, Pis’ma Zh. E ´ ksp. Teor. Fiz. 26, 373 (1977 [JETP Lett. 26, 252 (1977)]. [20] N. D. Birrell and P. C. W. Davies, J. Phys. A 13, 2109 (1980). [21] T. Damour, in Proceedings of the First Marcel Grossmann Meeting on General Relativity, edited by R. Ruffini (North-Holland, Amsterdam, 1977). [22] G. Scha¨fer, J. Phys. A 12, 2437 (1979). [23] E. Bre´zin and C. Itzykson, Phys. Rev. D 2, 1191 (1970). [24] A. G. Mirzabekian and G. A. Vilkovisky, Ann. Phys. (N.Y.) 270, 391 (1998).