Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features

Loading...
Thumbnail Image

Full text at PDC

Publication date

2018

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society
Citations
Google Scholar

Citation

Weixiang Ye, Sirin Celiksoy, Arpad Jakab, Alena Khmelinskaia, Tamara Heermann, Ana Raso, Seraphine V. Wegner, Germán Rivas, Petra Schwille, Rubén Ahijado-Guzmán, and Carsten Sönnichsen Journal of the American Chemical Society 2018 140 (51), 17901-17906 DOI: 10.1021/jacs.8b07759

Abstract

Single-particle plasmon spectroscopy has become a standard technique to detect and quantify the presence of unlabeled macromolecules. Here, we extend this method to determine their exact distance from the plasmon sensors with sub-nanometer resolution by systematically varying the sensing range into the surrounding by adjusting the size of the plasmonic nanoparticles. We improved current single-particle plasmon spectroscopy to record continuously for hours the scattering spectra of thousands of nanoparticles of different sizes simultaneously with 1.8 s time resolution. We apply this technique to study the interaction dynamics of bacterial Min proteins with supported lipid membranes of different composition. Our experiments reveal a surprisingly flexible operating mode of the Min proteins: In the presence of cardiolipin and membrane curvature induced by nanoparticles, the protein oscillation occurs on top of a stationary MinD patch. Our results reveal the need to consider membrane composition and local curvature as important parameters to quantitatively understand the Min protein system and could be extrapolated to other macromolecular systems. Our label-free method is generally easily implementable and well suited to measure distances of interacting biological macromolecules

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections