Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features

dc.contributor.authorYe, Weixiang
dc.contributor.authorCeliksoy, Sirin
dc.contributor.authorJakab, Arpad
dc.contributor.authorKhmelinskaia, Alena
dc.contributor.authorHeermann, Tamara
dc.contributor.authorRaso, Ana
dc.contributor.authorWegner, Seraphine V
dc.contributor.authorRivas, German
dc.contributor.authorSchwille, Petra
dc.contributor.authorAhijado Guzmán, Rubén
dc.contributor.authorSönnichsen, Carsten
dc.date.accessioned2024-01-15T15:43:13Z
dc.date.available2024-01-15T15:43:13Z
dc.date.issued2018
dc.description.abstractSingle-particle plasmon spectroscopy has become a standard technique to detect and quantify the presence of unlabeled macromolecules. Here, we extend this method to determine their exact distance from the plasmon sensors with sub-nanometer resolution by systematically varying the sensing range into the surrounding by adjusting the size of the plasmonic nanoparticles. We improved current single-particle plasmon spectroscopy to record continuously for hours the scattering spectra of thousands of nanoparticles of different sizes simultaneously with 1.8 s time resolution. We apply this technique to study the interaction dynamics of bacterial Min proteins with supported lipid membranes of different composition. Our experiments reveal a surprisingly flexible operating mode of the Min proteins: In the presence of cardiolipin and membrane curvature induced by nanoparticles, the protein oscillation occurs on top of a stationary MinD patch. Our results reveal the need to consider membrane composition and local curvature as important parameters to quantitatively understand the Min protein system and could be extrapolated to other macromolecular systems. Our label-free method is generally easily implementable and well suited to measure distances of interacting biological macromolecules
dc.description.departmentDepto. de Química Física
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationWeixiang Ye, Sirin Celiksoy, Arpad Jakab, Alena Khmelinskaia, Tamara Heermann, Ana Raso, Seraphine V. Wegner, Germán Rivas, Petra Schwille, Rubén Ahijado-Guzmán, and Carsten Sönnichsen Journal of the American Chemical Society 2018 140 (51), 17901-17906 DOI: 10.1021/jacs.8b07759
dc.identifier.doi10.1021/jacs.8b07759
dc.identifier.issn0002-7863
dc.identifier.officialurlhttps://doi.org/10.1021/jacs.8b07759
dc.identifier.urihttps://hdl.handle.net/20.500.14352/93167
dc.issue.number51
dc.journal.titleJournal of the American Chemical Society
dc.language.isoeng
dc.page.final17906
dc.page.initial17901
dc.publisherAmerican Chemical Society
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu544
dc.subject.keywordBioelectric phenomena
dc.subject.keywordMacromolecules
dc.subject.keywordNanoparticles
dc.subject.keywordPhospholipids
dc.subject.keywordPlasmonics
dc.subject.keywordProteins
dc.subject.ucmCiencias
dc.subject.unesco23 Química
dc.titlePlasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features
dc.typejournal article
dc.volume.number140
dspace.entity.typePublication
relation.isAuthorOfPublication4af13c82-c400-4bf3-9103-829be26b4d63
relation.isAuthorOfPublication.latestForDiscovery4af13c82-c400-4bf3-9103-829be26b4d63

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Plasmonic_Nanosensors.pdf
Size:
3.82 MB
Format:
Adobe Portable Document Format

Collections