Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Real analytic approximation of Lipschitz functions on Hilbert space and other Banach spaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

2012

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

Let X be a separable Banach space with a separating polynomial. We show that there exists C >= 1 (depending only on X) such that for every Lipschitz function f : X -> R, and every epsilon > 0, there exists a Lipschitz, real analytic function g : X -> R such that vertical bar f (x) - g(x)vertical bar <= epsilon e and Lip(g) <= C Lip(f). This result is new even in the case when X is a Hilbert space. Furthermore, in the Hilbertian case we also show that C can be assumed to be any number greater than I.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections