Real analytic approximation of Lipschitz functions on Hilbert space and other Banach spaces

dc.contributor.authorAzagra Rueda, Daniel
dc.contributor.authorFry, Robb
dc.contributor.authorKeener, L.
dc.date.accessioned2023-06-20T00:08:51Z
dc.date.available2023-06-20T00:08:51Z
dc.date.issued2012
dc.description.abstractLet X be a separable Banach space with a separating polynomial. We show that there exists C >= 1 (depending only on X) such that for every Lipschitz function f : X -> R, and every epsilon > 0, there exists a Lipschitz, real analytic function g : X -> R such that vertical bar f (x) - g(x)vertical bar <= epsilon e and Lip(g) <= C Lip(f). This result is new even in the case when X is a Hilbert space. Furthermore, in the Hilbertian case we also show that C can be assumed to be any number greater than I.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipNSERC (Canada)
dc.description.sponsorshipSantander-Complutense
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14741
dc.identifier.doi10.1016/j.jfa.2011.09.009
dc.identifier.issn0022-1236
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022123611003387
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42080
dc.issue.number1
dc.journal.titleJournal of Functional Analysis
dc.language.isoeng
dc.page.final166
dc.page.initial124
dc.publisherElsevier
dc.relation.projectID34/07-15844
dc.relation.projectID34/07-15844.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordReal analytic
dc.subject.keywordApproximation
dc.subject.keywordLipschitz function
dc.subject.keywordBanach space
dc.subject.keywordDifferentiable Functions
dc.subject.keywordPolynomials
dc.subject.keywordDerivatives
dc.subject.keywordC(0)
dc.subject.keywordMaps
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleReal analytic approximation of Lipschitz functions on Hilbert space and other Banach spaces
dc.typejournal article
dc.volume.number262
dspace.entity.typePublication
relation.isAuthorOfPublication6696556b-dc2e-4272-8f5f-fa6a7a2f5344
relation.isAuthorOfPublication.latestForDiscovery6696556b-dc2e-4272-8f5f-fa6a7a2f5344

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01.pdf
Size:
333.64 KB
Format:
Adobe Portable Document Format

Collections