Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Intrinsic sensitivity limits for multiparameter quantum metrology

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
Citations
Google Scholar

Citation

Abstract

The quantum Cramer-Rao bound is a cornerstone of modern quantum metrology, as it provides the ultimate precision in parameter estimation. In the multiparameter scenario, this bound becomes a matrix inequality, which can be cast to a scalar form with a properly chosen weight matrix. Multiparameter estimation thus elicits trade-offs in the precision with which each parameter can be estimated. We show that, if the information is encoded in a unitary transformation, we can naturally choose the weight matrix as the metric tensor linked to the geometry of the underlying algebra Su(n), with applications in numerous fields. This ensures an intrinsic bound that is independent of the choice of parametrization.

Research Projects

Organizational Units

Journal Issue

Description

©2021 American Physical Society. We would like to thank Hubert de Guise and Pieter Kok for useful discussions. A. Z. G. acknowledges funding from NSERC, the Walter C. Sumner Foundation, and Cray Inc. L. L. S. S. acknowledges financial support from the European Union’s Horizon 2020 research and innovation program (Projects ApresSF and Stormytune) and the Spanish Ministerio de Ciencia e Innovación (Grant No. PGC2018- 099183-B-I00). H. F. acknowledges funding from NSERC and CIFAR.

UCM subjects

Keywords

Collections