Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Geometric noise reduction for multivariate time series

Loading...
Thumbnail Image

Full text at PDC

Publication date

2006

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics
Citations
Google Scholar

Citation

Abstract

We propose an algorithm for the reduction of observational noise in chaotic multivariate time series. The algorithm is based on a maximum likelihood criterion, and its goal is to reduce the mean distance of the points of the cleaned time series to the attractor. We give evidence of the convergence of the empirical measure associated with the cleaned time series to the underlying invariant measure, implying the possibility to predict the long run behavior of the true dynamics.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections