Homogeneous descriptions and families of homogeneous structures
Loading...
Download
Official URL
Full text at PDC
Publication date
2024
Defense date
10/05/2024
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
Los espacios homogéneos son, por su sencillez, los objetos favoritos de geómetras y físicos. Las propiedades locales, en muchos casos, se convierten en globales. Sin lugar a dudas, son los espacios más estudiados y dan lugar a los primeros ejemplos en muchas nuevas teorías. Por ejemplo, los espacios Eucídeos, las esferas, los espacios hiperbólicos o los grupos de Lie son espacios homogéneos. Los espacios homogéneos son variedades diferenciables donde hay una acción transitiva, es decir, un grupo de transformaciones globales de manera que para cualquier par de puntos existe una transformación que envía uno en el otro. Utilizando esas transformaciones, bajo ciertas condiciones, podemos transportar cualquier tensor a todos los puntos de la variedad, como por ejemplo, un tensor métrico, o un tensor simpléctico. En particular, si existe una métrica diremos que el espacio homogéneos es Riemanniano...
Homogeneous spaces are, due to their simplicity, the favorite objects of study for geometers and physicists. Local properties often extend to global ones. Undoubtedly, these spaces are among the most extensively researched and give rise to the first examples of many new theories. These include Euclidean spaces, spheres, hyperbolic spaces, and Lie groups, all classified as homogeneous spaces. Homogeneous spaces are differentiable manifolds where there is a transitive action of a Liegroup. That is, a group of global transformations such that for any two points, there exists a transformation that sends one point to the other. Under suitable conditions and applying those transformations, we can transport any tensor we have at one point to another point, for example,a metric or a symplectic tensor. In particular, if a metric is present, the homogeneous space is called Riemannian...
Homogeneous spaces are, due to their simplicity, the favorite objects of study for geometers and physicists. Local properties often extend to global ones. Undoubtedly, these spaces are among the most extensively researched and give rise to the first examples of many new theories. These include Euclidean spaces, spheres, hyperbolic spaces, and Lie groups, all classified as homogeneous spaces. Homogeneous spaces are differentiable manifolds where there is a transitive action of a Liegroup. That is, a group of global transformations such that for any two points, there exists a transformation that sends one point to the other. Under suitable conditions and applying those transformations, we can transport any tensor we have at one point to another point, for example,a metric or a symplectic tensor. In particular, if a metric is present, the homogeneous space is called Riemannian...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 10-05-2024