Las nociones de área y volumen de figuras rectilíneas en geometría euclidiana
Loading...
Download
Official URL
Full text at PDC
Publication date
2023
Defense date
13/07/2023
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
En este trabajo se aborda la problemática de definir una teoría del área y del volumen de figuras rectilíneas en geometría euclidiana que no dependan de un axioma de continuidad como el de Dedekind (D). En el caso del área de polígonos, se presentarán cuatro formas distintas de definir el concepto de área; a saber, las funciones de medida de área, la equidescomposición, la equicomplementariedad y la equivalencia por disección (siendo primera de ellas la única en la que se emplean «números»). Se demostrará su equivalencia en un plano euclidiano aunque, de hecho, se hará sin utilizar el axioma de Dedekind (D) ni otros axiomas de continuidad similares como el de intersección circunferencia-circunferencia (ICC). En el caso del volumen de poliedros, se planteará el tercer problema de Hilbert y la solución dada por Dehn, constatando la imposibilidad de definir volumen sin usar el axioma de Dedekind (D)
This paper deals with the problem of defining a theory of area and volume for rectilinear figures in Euclidean geometry that do not depend on a continuity axiom such as Dedekind’s (D). In the case of the area of polygons, four different ways of defining the concept of area will be presented; namely, the area measurement functions, equidecomposition, equicomplementarity, and equivalence by dissection (being the first of these the only one in which "numbers.a re used). Its equivalence in a Euclidean plane will be proved, although, in fact, it will be done without using Dedekind’s axiom (D) or other similar continuity axioms such as the circumference-circumference intersection (ICC). In the case of the volume of polyhedra, Hilbert’s third problem and the solution given by Dehn will be considered, confirming the impossibility of defining volume without using Dedekind’s axiom (D)
This paper deals with the problem of defining a theory of area and volume for rectilinear figures in Euclidean geometry that do not depend on a continuity axiom such as Dedekind’s (D). In the case of the area of polygons, four different ways of defining the concept of area will be presented; namely, the area measurement functions, equidecomposition, equicomplementarity, and equivalence by dissection (being the first of these the only one in which "numbers.a re used). Its equivalence in a Euclidean plane will be proved, although, in fact, it will be done without using Dedekind’s axiom (D) or other similar continuity axioms such as the circumference-circumference intersection (ICC). In the case of the volume of polyhedra, Hilbert’s third problem and the solution given by Dehn will be considered, confirming the impossibility of defining volume without using Dedekind’s axiom (D)