Estimates on translations and Taylor expansions in fractional Sobolev spaces
Loading...
Official URL
Full text at PDC
Publication date
2020
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Abstract
In this paper we study how the (normalised) Gagliardo semi-norms [u]Ws,p(Rn) control translations. In particular, we prove that ‖u(⋅+y)−u‖Lp(Rn)≤C[u]Ws,p(Rn)|y|s for n≥1, s∈[0,1] and p∈[1,+∞], where C depends only on n. We then obtain a corresponding higher-order version of this result: we get fractional rates of the error term in the Taylor expansion. We also present relevant implications of our two results. First, we obtain a direct proof of several compact embedding of Ws,p(Rn) where the Fréchet–Kolmogorov Theorem is applied with known rates. We also derive fractional rates of convergence of the convolution of a function with suitable mollifiers. Thirdly, we obtain fractional rates of convergence of finite-difference discretisations for Ws,p(Rn).