Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Estimates on translations and Taylor expansions in fractional Sobolev spaces

dc.contributor.authorDel Teso Méndez, Félix
dc.contributor.authorGómez-Castro, D.
dc.contributor.authorVázquez, Juan Luis
dc.date.accessioned2023-06-17T08:28:50Z
dc.date.available2023-06-17T08:28:50Z
dc.date.issued2020-11
dc.description.abstractIn this paper we study how the (normalised) Gagliardo semi-norms [u]Ws,p(Rn) control translations. In particular, we prove that ‖u(⋅+y)−u‖Lp(Rn)≤C[u]Ws,p(Rn)|y|s for n≥1, s∈[0,1] and p∈[1,+∞], where C depends only on n. We then obtain a corresponding higher-order version of this result: we get fractional rates of the error term in the Taylor expansion. We also present relevant implications of our two results. First, we obtain a direct proof of several compact embedding of Ws,p(Rn) where the Fréchet–Kolmogorov Theorem is applied with known rates. We also derive fractional rates of convergence of the convolution of a function with suitable mollifiers. Thirdly, we obtain fractional rates of convergence of finite-difference discretisations for Ws,p(Rn).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73991
dc.identifier.doi10.1016/j.na.2020.111995
dc.identifier.issn0362-546X
dc.identifier.officialurlhttps://doi.org/10.1016/j.na.2020.111995
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7245
dc.journal.titleNonlinear Analysis: Theory, Methods & Applications
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDPGC2018-094522-B-I00; PGC2018-098440-B-I00
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordFunctional analysis
dc.subject.keywordSobolev spaces
dc.subject.keywordLinear function spaces
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleEstimates on translations and Taylor expansions in fractional Sobolev spaces
dc.typejournal article
dc.volume.number200
dcterms.references[1] R. Adams and J. Fournier. Sobolev spaces. Vol. 140. Academic press, 2003. [2] R. Alabern, J. Mateu, and J. Verdera. A new characterization of Sobolev spaces on Rn. Math. Ann. 354.2 (2012), pp. 589�626. doi: 10.1007/s00208-011-0738-0. [3] H. Amann. Compact embedding of vector-valued Sobolev and Besov spaces. Glasnik Matematicki 35.55 (2000), pp. 161-177. [4] L. Ambrosio, G. de Philippis, and L. Martinazzi. Gamma-convergence of nonlocal perimeter functionals. Manuscripta Mathematica 134.3 (2011), pp. 377�403. doi: 10.1007/s00229- 010- 0399-4. [5] C. Bennet and R. Sharpley. Interpolation of Operators. New York: Academic Press, 1988. [6] J. Bourgain, H. Brezis, and P. Mironescu. �Another look at Sobolev spaces�. Optimal Control and Partial Di�erential Equations. Amsterdam: IOS Press, 2001, pp. 439�455. [7] L. Brasco, E. Lindgren, and E. Parini. The fractional Cheeger problem. Interfaces and Free Boundaries 16.3 (2014), pp. 419�458. doi: 10.4171/IFB/325. [8] L. Brasco and A. Salort. A note on homogeneous Sobolev spaces of fractional order. Annali di Matematica Pura ed Applicata 198.4 (2019), pp. 1295�1330. doi: 10.1007/s10231-018-0817-x. [9] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Di�erential Equations. New York: Springer, 2010. doi: 10.1007/978-0-387-70914-7. [10] H. Brezis and P. Mironescu. Gagliardo�Nirenberg inequalities and non-inequalities: The full story. Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire 35.5 (2018), pp. 1355�1376. doi: 10.1016/j.anihpc.2017.11.007. [11] H. Brezis, J. V. Schaftingen, and P.-l. Yung. �A surprising formula for Sobolev norms and related topics�. To appear. [12] O. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea, and J. L. Varona. Nonlocal discrete di�usion equations and the fractional discrete Laplacian, regularity and applications. Adv. Math. 330 (2018), pp. 688�738. doi: 10.1016/j.aim.2018.03.023. [13] N. A. Dao, J. I. Díaz, and Q. H. Nguyen. Generalized Gagliardo�Nirenberg inequalities using Lorentz spaces, BMO, Hölder spaces and fractional Sobolev spaces. Nonlinear Analysis, Theory, Methods and Applications 173 (2018), pp. 146�153. doi: 10.1016/j.na.2018.04.001. [14] N. A. Dao, J. I. Díaz, and Q.-H. Nguyen. Fractional Sobolev inequalities revisited: the maximal function approach. Rendiconti Lincei - Matematica e Applicazioni 31.1 (2020), pp. 225�236. doi: 10.4171/RLM/887. [15] J. Dávila. On an open question about functions of bounded variation. Calculus of Variations and Partial Di�erential Equations 15.4 (2002), pp. 519�527. doi: 10.1007/s005260100135. [16] F. del Teso, J. Endal, and E. R. Jakobsen. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. SIAM J. Numer. Anal. 56.6 (2018), pp. 3611�3647. doi: 10.1137/18M1180748. [17] F. del Teso, D. Gómez-Castro, and J. L. Vázquez. Robust �nite di�erence schemes for the fractional Dirichlet problem. In preparation (2020). [18] E. Di Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker's guide to the fractional Sobolev spaces. Bulletin des Sciences Mathematiques 136.5 (2012), pp. 521�573. doi: 10.1016/j.bulsci. 2011.12.004. [19] I. Drelichman and R. G. Durán. Improved Poincaré inequalities in fractional Sobolev spaces. Annales Academiae Scientiarum Fennicae Mathematica 43 (2018), pp. 885�903. doi: 10.5186/ AASFM.2018.4352. [20] G. Leoni. A First Course in Sobolev Spaces. Vol. 105. Graduate Studies in Mathematics. Providence, Rhode Island: American Mathematical Society, 2009, p. 626. doi: 10.1090/gsm/105. [21] V. Maz'ya and T. Shaposhnikova. On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. Journal of Functional Analysis 195.2 (2002), pp. 230�238. doi: 10.1006/jfan.2002.3955. [22] V. Maz'ya. Sobolev Spaces. Vol. 342. Grundlehren der mathematischen Wissenschaften. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-15564-2. [23] M. Milman. Notes on limits of Sobolev spaces and the continuity of interpolation scales. Trans- actions of the American Mathematical Society 357.9 (2005), pp. 3425�3442. doi: 10.1090/S0002-9947-05-03937-1. [24] J. Simon. Compact Sets in the space Lp(0; T;B). Annali di Matematica pura ed applicata 146.65-96 (1986). [25] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3- 540-71483-5.
dspace.entity.typePublication
relation.isAuthorOfPublication5400d9ae-bfa7-4205-850d-f9e34a361fa6
relation.isAuthorOfPublication.latestForDiscovery5400d9ae-bfa7-4205-850d-f9e34a361fa6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomezcastro_estimates.pdf
Size:
407.9 KB
Format:
Adobe Portable Document Format

Collections