Estimates on translations and Taylor expansions in fractional Sobolev spaces

dc.contributor.authorDel Teso Méndez, Félix
dc.contributor.authorGómez-Castro, D.
dc.contributor.authorVázquez, Juan Luis
dc.date.accessioned2023-06-17T08:28:50Z
dc.date.available2023-06-17T08:28:50Z
dc.date.issued2020-11
dc.description.abstractIn this paper we study how the (normalised) Gagliardo semi-norms [u]Ws,p(Rn) control translations. In particular, we prove that ‖u(⋅+y)−u‖Lp(Rn)≤C[u]Ws,p(Rn)|y|s for n≥1, s∈[0,1] and p∈[1,+∞], where C depends only on n. We then obtain a corresponding higher-order version of this result: we get fractional rates of the error term in the Taylor expansion. We also present relevant implications of our two results. First, we obtain a direct proof of several compact embedding of Ws,p(Rn) where the Fréchet–Kolmogorov Theorem is applied with known rates. We also derive fractional rates of convergence of the convolution of a function with suitable mollifiers. Thirdly, we obtain fractional rates of convergence of finite-difference discretisations for Ws,p(Rn).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73991
dc.identifier.doi10.1016/j.na.2020.111995
dc.identifier.issn0362-546X
dc.identifier.officialurlhttps://doi.org/10.1016/j.na.2020.111995
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7245
dc.journal.titleNonlinear Analysis: Theory, Methods & Applications
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDPGC2018-094522-B-I00; PGC2018-098440-B-I00
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordFunctional analysis
dc.subject.keywordSobolev spaces
dc.subject.keywordLinear function spaces
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleEstimates on translations and Taylor expansions in fractional Sobolev spaces
dc.typejournal article
dc.volume.number200
dcterms.references[1] R. Adams and J. Fournier. Sobolev spaces. Vol. 140. Academic press, 2003. [2] R. Alabern, J. Mateu, and J. Verdera. A new characterization of Sobolev spaces on Rn. Math. Ann. 354.2 (2012), pp. 589�626. doi: 10.1007/s00208-011-0738-0. [3] H. Amann. Compact embedding of vector-valued Sobolev and Besov spaces. Glasnik Matematicki 35.55 (2000), pp. 161-177. [4] L. Ambrosio, G. de Philippis, and L. Martinazzi. Gamma-convergence of nonlocal perimeter functionals. Manuscripta Mathematica 134.3 (2011), pp. 377�403. doi: 10.1007/s00229- 010- 0399-4. [5] C. Bennet and R. Sharpley. Interpolation of Operators. New York: Academic Press, 1988. [6] J. Bourgain, H. Brezis, and P. Mironescu. �Another look at Sobolev spaces�. Optimal Control and Partial Di�erential Equations. Amsterdam: IOS Press, 2001, pp. 439�455. [7] L. Brasco, E. Lindgren, and E. Parini. The fractional Cheeger problem. Interfaces and Free Boundaries 16.3 (2014), pp. 419�458. doi: 10.4171/IFB/325. [8] L. Brasco and A. Salort. A note on homogeneous Sobolev spaces of fractional order. Annali di Matematica Pura ed Applicata 198.4 (2019), pp. 1295�1330. doi: 10.1007/s10231-018-0817-x. [9] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Di�erential Equations. New York: Springer, 2010. doi: 10.1007/978-0-387-70914-7. [10] H. Brezis and P. Mironescu. Gagliardo�Nirenberg inequalities and non-inequalities: The full story. Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire 35.5 (2018), pp. 1355�1376. doi: 10.1016/j.anihpc.2017.11.007. [11] H. Brezis, J. V. Schaftingen, and P.-l. Yung. �A surprising formula for Sobolev norms and related topics�. To appear. [12] O. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea, and J. L. Varona. Nonlocal discrete di�usion equations and the fractional discrete Laplacian, regularity and applications. Adv. Math. 330 (2018), pp. 688�738. doi: 10.1016/j.aim.2018.03.023. [13] N. A. Dao, J. I. Díaz, and Q. H. Nguyen. Generalized Gagliardo�Nirenberg inequalities using Lorentz spaces, BMO, Hölder spaces and fractional Sobolev spaces. Nonlinear Analysis, Theory, Methods and Applications 173 (2018), pp. 146�153. doi: 10.1016/j.na.2018.04.001. [14] N. A. Dao, J. I. Díaz, and Q.-H. Nguyen. Fractional Sobolev inequalities revisited: the maximal function approach. Rendiconti Lincei - Matematica e Applicazioni 31.1 (2020), pp. 225�236. doi: 10.4171/RLM/887. [15] J. Dávila. On an open question about functions of bounded variation. Calculus of Variations and Partial Di�erential Equations 15.4 (2002), pp. 519�527. doi: 10.1007/s005260100135. [16] F. del Teso, J. Endal, and E. R. Jakobsen. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. SIAM J. Numer. Anal. 56.6 (2018), pp. 3611�3647. doi: 10.1137/18M1180748. [17] F. del Teso, D. Gómez-Castro, and J. L. Vázquez. Robust �nite di�erence schemes for the fractional Dirichlet problem. In preparation (2020). [18] E. Di Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker's guide to the fractional Sobolev spaces. Bulletin des Sciences Mathematiques 136.5 (2012), pp. 521�573. doi: 10.1016/j.bulsci. 2011.12.004. [19] I. Drelichman and R. G. Durán. Improved Poincaré inequalities in fractional Sobolev spaces. Annales Academiae Scientiarum Fennicae Mathematica 43 (2018), pp. 885�903. doi: 10.5186/ AASFM.2018.4352. [20] G. Leoni. A First Course in Sobolev Spaces. Vol. 105. Graduate Studies in Mathematics. Providence, Rhode Island: American Mathematical Society, 2009, p. 626. doi: 10.1090/gsm/105. [21] V. Maz'ya and T. Shaposhnikova. On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. Journal of Functional Analysis 195.2 (2002), pp. 230�238. doi: 10.1006/jfan.2002.3955. [22] V. Maz'ya. Sobolev Spaces. Vol. 342. Grundlehren der mathematischen Wissenschaften. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-15564-2. [23] M. Milman. Notes on limits of Sobolev spaces and the continuity of interpolation scales. Trans- actions of the American Mathematical Society 357.9 (2005), pp. 3425�3442. doi: 10.1090/S0002-9947-05-03937-1. [24] J. Simon. Compact Sets in the space Lp(0; T;B). Annali di Matematica pura ed applicata 146.65-96 (1986). [25] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3- 540-71483-5.
dspace.entity.typePublication
relation.isAuthorOfPublication5400d9ae-bfa7-4205-850d-f9e34a361fa6
relation.isAuthorOfPublication.latestForDiscovery5400d9ae-bfa7-4205-850d-f9e34a361fa6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomezcastro_estimates.pdf
Size:
407.9 KB
Format:
Adobe Portable Document Format

Collections