Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Connectedness of intersections of special Schubert varieties

Loading...
Thumbnail Image

Full text at PDC

Publication date

1994

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

Let Gr l,n be the Grassmann variety of l -dimensional subspaces of an n -dimensional vector space V over an algebraically closed field k . Let σ(W)={Λ∈Gr l,n : Λ∩W≠0} denote the special Schubert variety associated to a subspace W of V . The main theorem of the paper is the following: The intersection ⋂ m j=1 σ(V j ) of the special Schubert varieties associated to subspaces V j , j=1,2,⋯,m , of dimension n−l−a j +1 such that l(n−l)−∑ m j=1 a j >0 is connected. Moreover, the intersection is irreducible of dimension l(n−l)−∑ m j=1 a j for a general choice of V j . The authors conjecture that the irreducibility holds for intersections of arbitrary Schubert varieties, when they are in general position with nonempty intersection. For a related connectivity result the authors refer to a paper of J. P. Hansen [Amer. J. Math. 105 (1983), no. 3, 633–639].

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections