Connectedness of intersections of special Schubert varieties
dc.contributor.author | Sols Lucía, Ignacio | |
dc.contributor.author | Hernández, Rafael | |
dc.date.accessioned | 2023-06-20T18:42:26Z | |
dc.date.available | 2023-06-20T18:42:26Z | |
dc.date.issued | 1994-05 | |
dc.description.abstract | Let Gr l,n be the Grassmann variety of l -dimensional subspaces of an n -dimensional vector space V over an algebraically closed field k . Let σ(W)={Λ∈Gr l,n : Λ∩W≠0} denote the special Schubert variety associated to a subspace W of V . The main theorem of the paper is the following: The intersection ⋂ m j=1 σ(V j ) of the special Schubert varieties associated to subspaces V j , j=1,2,⋯,m , of dimension n−l−a j +1 such that l(n−l)−∑ m j=1 a j >0 is connected. Moreover, the intersection is irreducible of dimension l(n−l)−∑ m j=1 a j for a general choice of V j . The authors conjecture that the irreducibility holds for intersections of arbitrary Schubert varieties, when they are in general position with nonempty intersection. For a related connectivity result the authors refer to a paper of J. P. Hansen [Amer. J. Math. 105 (1983), no. 3, 633–639]. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20572 | |
dc.identifier.doi | 10.1007/BF02567610 | |
dc.identifier.issn | 0025-2611 | |
dc.identifier.officialurl | http://link.springer.com/article/10.1007%2FBF02567610 | |
dc.identifier.relatedurl | http://link.springer.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58379 | |
dc.issue.number | 2 | |
dc.journal.title | Manuscripta mathematica | |
dc.language.iso | eng | |
dc.page.final | 222 | |
dc.page.initial | 215 | |
dc.publisher | Springer | |
dc.relation.projectID | PB90-0637 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512 | |
dc.subject.keyword | Divisors | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Connectedness of intersections of special Schubert varieties | |
dc.type | journal article | |
dc.volume.number | 83 | |
dcterms.references | J. Dieudonné, A. Grothendieck: EGA IV. Publ. Math. IHES28, (1966) D. Eisenbud, J. Harris: Divisors on general curves and cuspidal rational curves. Inv. Math.74, 371–418 (1983) F. Enriques, O. Chisini: Teoria geometrica delle equazioni e delle funzioni algebriche, vol. 3. Zanichelli (1924) W. Fulton, R. Lazarsfeld: On the connectedness of degeneracy loci and special divisors. Acta Math.146, 271–283 (1981) P. Griffiths, J. Harris: The dimension of the variety of special linear systems on a general curve. Duke Math. J.47, 233–272 (1980) J. Hansen: A connectivity theorem for flag manifolds and Grassmannians. Amer. J. Math105, 633–639 (1983) J. Harris, D. Eisenbud: Curves in projective space. Les Presses de L'Université de Montreal,85 (1982) R. Hartshorne: Algebraic Geometry. Springer Verlag (1978) S. Kleiman: The transversality of a general translate. Comp. Math.28, 287–297 (1978) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6d35def4-3d5f-4978-800f-82b7edf76b5d | |
relation.isAuthorOfPublication.latestForDiscovery | 6d35def4-3d5f-4978-800f-82b7edf76b5d |
Download
Original bundle
1 - 1 of 1