Connectedness of intersections of special Schubert varieties

dc.contributor.authorSols Lucía, Ignacio
dc.contributor.authorHernández, Rafael
dc.date.accessioned2023-06-20T18:42:26Z
dc.date.available2023-06-20T18:42:26Z
dc.date.issued1994-05
dc.description.abstractLet Gr l,n be the Grassmann variety of l -dimensional subspaces of an n -dimensional vector space V over an algebraically closed field k . Let σ(W)={Λ∈Gr l,n : Λ∩W≠0} denote the special Schubert variety associated to a subspace W of V . The main theorem of the paper is the following: The intersection ⋂ m j=1 σ(V j ) of the special Schubert varieties associated to subspaces V j , j=1,2,⋯,m , of dimension n−l−a j +1 such that l(n−l)−∑ m j=1 a j >0 is connected. Moreover, the intersection is irreducible of dimension l(n−l)−∑ m j=1 a j for a general choice of V j . The authors conjecture that the irreducibility holds for intersections of arbitrary Schubert varieties, when they are in general position with nonempty intersection. For a related connectivity result the authors refer to a paper of J. P. Hansen [Amer. J. Math. 105 (1983), no. 3, 633–639].
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20572
dc.identifier.doi10.1007/BF02567610
dc.identifier.issn0025-2611
dc.identifier.officialurlhttp://link.springer.com/article/10.1007%2FBF02567610
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58379
dc.issue.number2
dc.journal.titleManuscripta mathematica
dc.language.isoeng
dc.page.final222
dc.page.initial215
dc.publisherSpringer
dc.relation.projectIDPB90-0637
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.keywordDivisors
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleConnectedness of intersections of special Schubert varieties
dc.typejournal article
dc.volume.number83
dcterms.referencesJ. Dieudonné, A. Grothendieck: EGA IV. Publ. Math. IHES28, (1966) D. Eisenbud, J. Harris: Divisors on general curves and cuspidal rational curves. Inv. Math.74, 371–418 (1983) F. Enriques, O. Chisini: Teoria geometrica delle equazioni e delle funzioni algebriche, vol. 3. Zanichelli (1924) W. Fulton, R. Lazarsfeld: On the connectedness of degeneracy loci and special divisors. Acta Math.146, 271–283 (1981) P. Griffiths, J. Harris: The dimension of the variety of special linear systems on a general curve. Duke Math. J.47, 233–272 (1980) J. Hansen: A connectivity theorem for flag manifolds and Grassmannians. Amer. J. Math105, 633–639 (1983) J. Harris, D. Eisenbud: Curves in projective space. Les Presses de L'Université de Montreal,85 (1982) R. Hartshorne: Algebraic Geometry. Springer Verlag (1978) S. Kleiman: The transversality of a general translate. Comp. Math.28, 287–297 (1978)
dspace.entity.typePublication
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication.latestForDiscovery6d35def4-3d5f-4978-800f-82b7edf76b5d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sols14.pdf
Size:
756.29 KB
Format:
Adobe Portable Document Format

Collections