Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Connectedness of intersections of special Schubert varieties

dc.contributor.authorSols Lucía, Ignacio
dc.contributor.authorHernández, Rafael
dc.date.accessioned2023-06-20T18:42:26Z
dc.date.available2023-06-20T18:42:26Z
dc.date.issued1994-05
dc.description.abstractLet Gr l,n be the Grassmann variety of l -dimensional subspaces of an n -dimensional vector space V over an algebraically closed field k . Let σ(W)={Λ∈Gr l,n : Λ∩W≠0} denote the special Schubert variety associated to a subspace W of V . The main theorem of the paper is the following: The intersection ⋂ m j=1 σ(V j ) of the special Schubert varieties associated to subspaces V j , j=1,2,⋯,m , of dimension n−l−a j +1 such that l(n−l)−∑ m j=1 a j >0 is connected. Moreover, the intersection is irreducible of dimension l(n−l)−∑ m j=1 a j for a general choice of V j . The authors conjecture that the irreducibility holds for intersections of arbitrary Schubert varieties, when they are in general position with nonempty intersection. For a related connectivity result the authors refer to a paper of J. P. Hansen [Amer. J. Math. 105 (1983), no. 3, 633–639].
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20572
dc.identifier.doi10.1007/BF02567610
dc.identifier.issn0025-2611
dc.identifier.officialurlhttp://link.springer.com/article/10.1007%2FBF02567610
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58379
dc.issue.number2
dc.journal.titleManuscripta mathematica
dc.language.isoeng
dc.page.final222
dc.page.initial215
dc.publisherSpringer
dc.relation.projectIDPB90-0637
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.keywordDivisors
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleConnectedness of intersections of special Schubert varieties
dc.typejournal article
dc.volume.number83
dcterms.referencesJ. Dieudonné, A. Grothendieck: EGA IV. Publ. Math. IHES28, (1966) D. Eisenbud, J. Harris: Divisors on general curves and cuspidal rational curves. Inv. Math.74, 371–418 (1983) F. Enriques, O. Chisini: Teoria geometrica delle equazioni e delle funzioni algebriche, vol. 3. Zanichelli (1924) W. Fulton, R. Lazarsfeld: On the connectedness of degeneracy loci and special divisors. Acta Math.146, 271–283 (1981) P. Griffiths, J. Harris: The dimension of the variety of special linear systems on a general curve. Duke Math. J.47, 233–272 (1980) J. Hansen: A connectivity theorem for flag manifolds and Grassmannians. Amer. J. Math105, 633–639 (1983) J. Harris, D. Eisenbud: Curves in projective space. Les Presses de L'Université de Montreal,85 (1982) R. Hartshorne: Algebraic Geometry. Springer Verlag (1978) S. Kleiman: The transversality of a general translate. Comp. Math.28, 287–297 (1978)
dspace.entity.typePublication
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication.latestForDiscovery6d35def4-3d5f-4978-800f-82b7edf76b5d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sols14.pdf
Size:
756.29 KB
Format:
Adobe Portable Document Format

Collections