Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the surface impact of Arctic stratospheric ozone extremes

Loading...
Thumbnail Image

Full text at PDC

Publication date

2015

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing Ltd
Citations
Google Scholar

Citation

Abstract

A comprehensive stratosphere-resolving atmospheric model, with interactive stratospheric ozone chemistry, coupled to ocean, sea ice and land components is used to explore the tropospheric and surface impacts of large springtime ozone anomalies in the Arctic stratosphere. Coupling between the Antarctic ozone hole and Southern Hemisphere climate has been identified in numerous studies, but connections of Arctic ozone loss to surface climate have been more difficult to elucidate. Analyzing an ensemble of historical integrations with all known natural and anthropogenic forcings specified over the period 1955-2005, we find that extremely low stratospheric ozone changes are able to produce large and robust anomalies in tropospheric wind, temperature and precipitation in April and May over large portions of the Northern Hemisphere (most notably over the North Atlantic and Eurasia). Further, these ozone-induced surface anomalies are obtained only in the last two decades of the 20th century, when high concentrations of ozone depleting substances generate sufficiently strong stratospheric temperature anomalies to impact the surface climate. Our findings suggest that coupling between chemistry and dynamics is essential for a complete representation of surface climate variability and climate change not only in Antarctica but also in the Arctic.

Research Projects

Organizational Units

Journal Issue

Description

© 2015 IOP Publishing Ltd. The WACCM4 simulations analyzed in this study where performed thanks to high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc), provided by the Computational and Information Systems Laboratory at the National Center for Atmospheric Research (NCAR), which is sponsored by the US National Science Foundation. The authors thank Dr D R Marsh and Dr R Neely for kindly providing the model simulations and Dr D Ivy for providing the plot of ozone data presented in the supplement. NC acknowledges partial support from the Spanish Ministry of Economy and Competitiveness through the MATRES (CGL2012-34221) project and the European Project 603557-STRATOCLIM under program FP7-ENV.2013.6.1-2. The work of LMP is funded in part by a grant of the US National Science Foundation to Columbia University. The work of SS is funded in part by grant 1419667 of the US National Science Foundation to MIT.

Unesco subjects

Keywords

Collections