Assessment of groups in a network organization based on the Shapley group value.
dc.contributor.author | Flores, Ramón | |
dc.contributor.author | Molina Ferragut, Elisenda | |
dc.contributor.author | Tejada Cazorla, Juan Antonio | |
dc.date.accessioned | 2023-06-18T06:52:27Z | |
dc.date.available | 2023-06-18T06:52:27Z | |
dc.date.issued | 2016 | |
dc.description.abstract | The focus of this paper is the assessment of groups of agents or units in a network organization. Given a social network, the relations between agents are modeled by means of a graph, and its functionality will be codified by means of a cooperative game. Building on previous work of Gomez et al. (2003) for the individual case, we propose a Myerson group value to evaluate the ability of each group of agents inside the social network to achieve the organization's goals. We analyze this centrality measure, and in particular we offer several decompositions that facilitate obtaining a precise interpretation of it. | |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/37570 | |
dc.identifier.doi | 10.1016/j.dss.2016.01.001 | |
dc.identifier.issn | 0167-9236 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0167923616000038 | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24464 | |
dc.journal.title | Decision Support Systems | |
dc.language.iso | eng | |
dc.page.final | 105 | |
dc.page.initial | 87 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MTM2011-27892 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.22 | |
dc.subject.keyword | Centrality | |
dc.subject.keyword | Shapley group value | |
dc.subject.keyword | Myerson value | |
dc.subject.keyword | Network organization | |
dc.subject.ucm | Estadística matemática (Matemáticas) | |
dc.subject.unesco | 1209 Estadística | |
dc.title | Assessment of groups in a network organization based on the Shapley group value. | |
dc.type | journal article | |
dc.volume.number | 83 | |
dcterms.references | [1] S.P. Borgatti, Identifying sets of key players in a social network, Comput. Math.Organ. Theory 12 (2006) 21–34. [2] R. van den Brink, C. Dietz, Union values for games with coalition structure, Decis.Support. Syst. 66 (2014) 1–8. [3] J.I. Bulow, J.D. Geanakoplos, P.D. Klemperer,Multimarket oligopoly: strategic substitutes and complements, J. Polit. Econ. 93 (1985) 488–511. [4] J. Castro, D. Gomez, J. Tejada, Polynomial alculation of the Shapley value based on sampling, Comput. Oper. Res. 36 (2009) 1726–1730. [5] C.-M. Chiu, M.-H. Hsu, E.T.G. Wang, Understanding knowledge sharing in virtual communities: an integration of social capital and social cognitive theories, Decis. Support. Syst. 42 (2006) 1872–1888. [6] R. Cross, A. Parker, The Hidden Power of Social Networks, Harvard Business School Press, Boston, Massachusetts, 2004. [7] R. Cross, A. Parker, S.P. Borgatti, Making invisible work visible: using social network analysis to support strategic collaboration, Calif. Manag. Rev. 44 (2) (2002) 25–46. [8] J. Derks, S. Tijs, On merge propoerties of the Shapley value, Int. Game Theory Rev. 2 (2000) 249–257. [10] R. Flores, E. Molina, J. Tejada, The Shapley Group Value, 2014 (arXiv: 1412.5429[math.OC]). [11] L.C. Freeman, Centrality in social networks: conceptual clarification, Soc. Networks 1 (1979) 215–239. [12] D. Gomez, E. González-Arangüena, C. Manuel, G. Owen, M. Pozo, J. Tejada, Centrality and power in social networks: a game theoretic approach, Math. Soc. Sci. 46 (2003) 27–54. [13] B. Grofman, G. Owen, A game theoretic approach to measuring centrality in social networks, Soc. Networks 4 (1982) 213–224. [14] C. Kiss, M. Bichler, Identification of influencers—measuring influence in customer networks, Decis. Support. Syst. 46 (2008) 233–253. [15] R.B. Myerson, Graphs and cooperation in games, Math. Oper. Res. 2 (1977) 225–229. [16] A. van den Nouweland, P. Borm, On the convexity of communication games, Int. J. Game Theory 19 (1991) 421–430. [17] I. Segal, Collusion, exclusion and inclusion in random-order bargaining, Rev. Econ. Stud. 70 (2003) 439–460. [18] L.S. Shapley, A value for n-person games, in: H.W. Kuhn, A.W. Tucker (Eds.), Contributions to the Theory of Games, vol. II, Princeton University Press, Princeton 1953, pp. 307–317. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 288a087a-7833-47ce-a8a6-f686293ac375 | |
relation.isAuthorOfPublication | 77359969-4313-4334-adef-1c2d7413fbb5 | |
relation.isAuthorOfPublication.latestForDiscovery | 288a087a-7833-47ce-a8a6-f686293ac375 |
Download
Original bundle
1 - 1 of 1