Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Assessment of groups in a network organization based on the Shapley group value.

dc.contributor.authorFlores, Ramón
dc.contributor.authorMolina Ferragut, Elisenda
dc.contributor.authorTejada Cazorla, Juan Antonio
dc.date.accessioned2023-06-18T06:52:27Z
dc.date.available2023-06-18T06:52:27Z
dc.date.issued2016
dc.description.abstractThe focus of this paper is the assessment of groups of agents or units in a network organization. Given a social network, the relations between agents are modeled by means of a graph, and its functionality will be codified by means of a cooperative game. Building on previous work of Gomez et al. (2003) for the individual case, we propose a Myerson group value to evaluate the ability of each group of agents inside the social network to achieve the organization's goals. We analyze this centrality measure, and in particular we offer several decompositions that facilitate obtaining a precise interpretation of it.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37570
dc.identifier.doi10.1016/j.dss.2016.01.001
dc.identifier.issn0167-9236
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0167923616000038
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24464
dc.journal.titleDecision Support Systems
dc.language.isoeng
dc.page.final105
dc.page.initial87
dc.publisherElsevier
dc.relation.projectIDMTM2011-27892
dc.rights.accessRightsrestricted access
dc.subject.cdu519.22
dc.subject.keywordCentrality
dc.subject.keywordShapley group value
dc.subject.keywordMyerson value
dc.subject.keywordNetwork organization
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleAssessment of groups in a network organization based on the Shapley group value.
dc.typejournal article
dc.volume.number83
dcterms.references[1] S.P. Borgatti, Identifying sets of key players in a social network, Comput. Math.Organ. Theory 12 (2006) 21–34. [2] R. van den Brink, C. Dietz, Union values for games with coalition structure, Decis.Support. Syst. 66 (2014) 1–8. [3] J.I. Bulow, J.D. Geanakoplos, P.D. Klemperer,Multimarket oligopoly: strategic substitutes and complements, J. Polit. Econ. 93 (1985) 488–511. [4] J. Castro, D. Gomez, J. Tejada, Polynomial alculation of the Shapley value based on sampling, Comput. Oper. Res. 36 (2009) 1726–1730. [5] C.-M. Chiu, M.-H. Hsu, E.T.G. Wang, Understanding knowledge sharing in virtual communities: an integration of social capital and social cognitive theories, Decis. Support. Syst. 42 (2006) 1872–1888. [6] R. Cross, A. Parker, The Hidden Power of Social Networks, Harvard Business School Press, Boston, Massachusetts, 2004. [7] R. Cross, A. Parker, S.P. Borgatti, Making invisible work visible: using social network analysis to support strategic collaboration, Calif. Manag. Rev. 44 (2) (2002) 25–46. [8] J. Derks, S. Tijs, On merge propoerties of the Shapley value, Int. Game Theory Rev. 2 (2000) 249–257. [10] R. Flores, E. Molina, J. Tejada, The Shapley Group Value, 2014 (arXiv: 1412.5429[math.OC]). [11] L.C. Freeman, Centrality in social networks: conceptual clarification, Soc. Networks 1 (1979) 215–239. [12] D. Gomez, E. González-Arangüena, C. Manuel, G. Owen, M. Pozo, J. Tejada, Centrality and power in social networks: a game theoretic approach, Math. Soc. Sci. 46 (2003) 27–54. [13] B. Grofman, G. Owen, A game theoretic approach to measuring centrality in social networks, Soc. Networks 4 (1982) 213–224. [14] C. Kiss, M. Bichler, Identification of influencers—measuring influence in customer networks, Decis. Support. Syst. 46 (2008) 233–253. [15] R.B. Myerson, Graphs and cooperation in games, Math. Oper. Res. 2 (1977) 225–229. [16] A. van den Nouweland, P. Borm, On the convexity of communication games, Int. J. Game Theory 19 (1991) 421–430. [17] I. Segal, Collusion, exclusion and inclusion in random-order bargaining, Rev. Econ. Stud. 70 (2003) 439–460. [18] L.S. Shapley, A value for n-person games, in: H.W. Kuhn, A.W. Tucker (Eds.), Contributions to the Theory of Games, vol. II, Princeton University Press, Princeton 1953, pp. 307–317.
dspace.entity.typePublication
relation.isAuthorOfPublication288a087a-7833-47ce-a8a6-f686293ac375
relation.isAuthorOfPublication77359969-4313-4334-adef-1c2d7413fbb5
relation.isAuthorOfPublication.latestForDiscovery288a087a-7833-47ce-a8a6-f686293ac375

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tejada20.pdf
Size:
374.3 KB
Format:
Adobe Portable Document Format

Collections