Deployment of neural networks through PYNQ
dc.contributor.advisor | Del Barrio García, Alberto Antonio | |
dc.contributor.author | Sun, Wenbo | |
dc.date.accessioned | 2023-10-06T16:07:56Z | |
dc.date.available | 2023-10-06T16:07:56Z | |
dc.date.issued | 2023 | |
dc.description | Trabajo de Fin de Máster en Ingeniería Informática, Facultad de Informática UCM, Departamento de Arquitectura de Computadores y Automática, Curso 2022/2023 | |
dc.description.abstract | The PYNQ platform provides a python interface for accessing FPGA resources, which gives us the opportunity to efficiently deploy neural network models on FPGA to achieve high-performance and real-time image classification and target detection tasks. This hardware-accelerated approach can provide faster inference speed and lower power consumption than software-accelerated approach. In this research and development project, our main research objective is to deploy neural networks on PYNQ. I have used the PYNQ-Z1 development board for experiments. Four type of networks have been deployed, namely: a YOLO network, a BNN network, a ResNet network and a MobileNetv2 network. After deployment, I have compared their accuracy and measured their execution time on hardware, achieving promising results for a resource-constrained device as the Z1 board. | |
dc.description.department | Depto. de Arquitectura de Computadores y Automática | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.status | unpub | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/88205 | |
dc.language.iso | eng | |
dc.master.title | Máster en Ingeniería Informática | |
dc.page.total | 59 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.cdu | 004(043.3) | |
dc.subject.keyword | PYNQ | |
dc.subject.keyword | FPGA | |
dc.subject.keyword | Computer vision | |
dc.subject.keyword | Neural network | |
dc.subject.keyword | Object detection | |
dc.subject.keyword | Deep learning | |
dc.subject.keyword | Machine learning | |
dc.subject.ucm | Informática (Informática) | |
dc.subject.unesco | 33 Ciencias Tecnológicas | |
dc.title | Deployment of neural networks through PYNQ | |
dc.title.alternative | Despliegue de redes neuronales mediante PYNQ | |
dc.type | master thesis | |
dc.type.hasVersion | AM | |
dspace.entity.type | Publication | |
relation.isAdvisorOfPublication | 53f86d34-b560-4105-a0bc-a8d1994153ab | |
relation.isAdvisorOfPublication.latestForDiscovery | 53f86d34-b560-4105-a0bc-a8d1994153ab |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- WenboSun-versionfinal-TFM-Despliegue de Redes Neuronales mediante PYNQ.pdf
- Size:
- 1.82 MB
- Format:
- Adobe Portable Document Format