Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deployment of neural networks through PYNQ

dc.contributor.advisorDel Barrio García, Alberto Antonio
dc.contributor.authorSun, Wenbo
dc.date.accessioned2023-10-06T16:07:56Z
dc.date.available2023-10-06T16:07:56Z
dc.date.issued2023
dc.descriptionTrabajo de Fin de Máster en Ingeniería Informática, Facultad de Informática UCM, Departamento de Arquitectura de Computadores y Automática, Curso 2022/2023
dc.description.abstractThe PYNQ platform provides a python interface for accessing FPGA resources, which gives us the opportunity to efficiently deploy neural network models on FPGA to achieve high-performance and real-time image classification and target detection tasks. This hardware-accelerated approach can provide faster inference speed and lower power consumption than software-accelerated approach. In this research and development project, our main research objective is to deploy neural networks on PYNQ. I have used the PYNQ-Z1 development board for experiments. Four type of networks have been deployed, namely: a YOLO network, a BNN network, a ResNet network and a MobileNetv2 network. After deployment, I have compared their accuracy and measured their execution time on hardware, achieving promising results for a resource-constrained device as the Z1 board.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statusunpub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/88205
dc.language.isoeng
dc.master.titleMáster en Ingeniería Informática
dc.page.total59
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu004(043.3)
dc.subject.keywordPYNQ
dc.subject.keywordFPGA
dc.subject.keywordComputer vision
dc.subject.keywordNeural network
dc.subject.keywordObject detection
dc.subject.keywordDeep learning
dc.subject.keywordMachine learning
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleDeployment of neural networks through PYNQ
dc.title.alternativeDespliegue de redes neuronales mediante PYNQ
dc.typemaster thesis
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAdvisorOfPublication53f86d34-b560-4105-a0bc-a8d1994153ab
relation.isAdvisorOfPublication.latestForDiscovery53f86d34-b560-4105-a0bc-a8d1994153ab

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
WenboSun-versionfinal-TFM-Despliegue de Redes Neuronales mediante PYNQ.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format