Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deployment of neural networks through PYNQ

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2023

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

The PYNQ platform provides a python interface for accessing FPGA resources, which gives us the opportunity to efficiently deploy neural network models on FPGA to achieve high-performance and real-time image classification and target detection tasks. This hardware-accelerated approach can provide faster inference speed and lower power consumption than software-accelerated approach. In this research and development project, our main research objective is to deploy neural networks on PYNQ. I have used the PYNQ-Z1 development board for experiments. Four type of networks have been deployed, namely: a YOLO network, a BNN network, a ResNet network and a MobileNetv2 network. After deployment, I have compared their accuracy and measured their execution time on hardware, achieving promising results for a resource-constrained device as the Z1 board.

Research Projects

Organizational Units

Journal Issue

Description

Trabajo de Fin de Máster en Ingeniería Informática, Facultad de Informática UCM, Departamento de Arquitectura de Computadores y Automática, Curso 2022/2023

Keywords