Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Wave solutions for a discrete reaction-diffusion equation

Loading...
Thumbnail Image

Full text at PDC

Publication date

2000

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge University Press
Citations
Google Scholar

Citation

Carpio Rodríguez, A. M., Chapman, S. J., Hastings, S. & Mcleod, J. B. «Wave Solutions for a Discrete Reaction-Diffusion Equation». European Journal of Applied Mathematics, vol. 11, n.o 4, septiembre de 2000, pp. 399-412. DOI.org (Crossref), https://doi.org/10.1017/S0956792599004222.

Abstract

Motivated by models from fracture mechanics and from biology, we study the infinite system of differential equations u'(n) = u(n-1) - 2u(n) + u(n+1) - A sin u(n) + F, ' = d/dt, where A and F are positive parameters. For fixed A > 0 we show that there are monotone travelling waves for F in an interval F-crit < F < A, and we are able to give a rigorous upper bound for F-crit, in contrast to previous work on similar problems. We raise the problem of characterizing those nonlinearities (apparently the more common) for which F-crit > 0. We show that, for the sine nonlinearity, this is true if A > 2. (Our method yields better estimates than this, but does not include all A > 0.) We also consider the existence and multiplicity of time independent solutions when \F\ < F-crit.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections