Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Weak compactness in variable exponent spaces

dc.contributor.authorHernández, Francisco L.
dc.contributor.authorRuiz Bermejo, César
dc.contributor.authorSanchiz, Mauro
dc.date.accessioned2023-06-17T09:05:59Z
dc.date.available2023-06-17T09:05:59Z
dc.date.issued2021
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2021)
dc.description.abstractThis paper shows necessary and sufficient conditions on subsets of variable exponent spaces Lp(·)(Ω) in order to be weakly compact. Useful criteria are given extending Andô results for Orlicz spaces. As application, we prove that all separable variable exponent spaces are weakly Banach-Saks. Also, L-weakly compact and weakly compact inclusions between variable exponent spaces are studied.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/65756
dc.identifier.doi10.1016/j.jfa.2021.109087
dc.identifier.issn0022-1236
dc.identifier.officialurlhttps://doi.org/10.1016/j.jfa.2021.109087
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0022123621001695#!
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8166
dc.issue.number6
dc.journal.titleJournal of Functional Analysis
dc.language.isoeng
dc.page.initial109087
dc.publisherElsevier
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu517.98
dc.subject.keywordVariable exponent Lebesgue spaces
dc.subject.keywordWeak compactness
dc.subject.keywordEqui-integrability
dc.subject.keywordWeak Banach-Saks property
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleWeak compactness in variable exponent spaces
dc.typejournal article
dc.volume.number281
dcterms.references[1]F. Albiac, N. Kalton, Topics in Banach Space Theory, Springer, 2006. [2]T. Andô, Weakly compact sets in Orlicz spaces, Can. J. Math. 14 (1962) 170–176. [3]D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Birkhäuser, Basel, 2013. [4]C.J. dela ValléePoussin, Sur l’intégrale de lebesgue, Trans. Am. Math. Soc. 16 (1912) 435–501. [5]L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev Spaces with Variable Ex-ponents, Lecture Notes in Math., vol.2017, 2011. [6]J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984. [7]P.G. Dodds, F.A. Sukochev, G. Schlüchtermann, Weak compactness criteria in symmetric spaces of measurable operators, Math. Proc. Camb. Philos. Soc. 131 (2001) 363- 384. [8]B. Dong, Z. Fu, J. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations, Sci. China Math. 61 (2018) 1807–1824. [9]J. Flores, F.L. Hernández, C. Ruiz, M. Sanchiz, On the structure of variable exponent spaces, Indag. Math. 31 (2020) 831–841. [10]J. Flores, C. Ruiz, Domination by positive Banach-Saks operators, Stud. Math. 173 (2006) 185–192. [11]P. Górka, R. Bandaliyev, Relatively compact sets in variable-exponent Lebesgue spaces, Banach J. Math. Anal. 12 (2018) 331–346. [12]P. Górka, A. Macios, Almost everything you need to know about relatively compact sets in variable Lebesgue spaces, J. Funct. Anal. 269 (2015) 1925–1949. [13]P. Harjulehto, P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Math., vol.2236, Springer, 2019. [14]F.L. Hernández, C. Ruiz, �q-structure of variable exponent spaces, J. Math. Anal. Appl. 389 (2012) 899–907. [15]F.L. Hernández, Y. Raynaud, E.M. Semenov, Bernstein widths and super strictly singular inclusions, Oper. Theory, Adv. Appl. 218 (2012) 359–376. [16]J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, 1979. [17]J. Lukes, L. Pick, D. Pokorný, On geometric properties of the spaces Lp(x), Rev. Mat. Complut. 24 (2011) 115–130. [18]P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, Heidelberg, 1991. [19]J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol.1034, Springer, 1983. [20]M. Nowak, Weak compactness in Köthe-Bocher spaces and Orlicz-Bocher spaces, Indag. Math. 10 (1999) 73–86. [21]M.M. Rao, Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, 1991. [22]M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol.1748, Springer, 2001. [23]W. Szlenk, Sur les suites faiblements convergentes dans l’espace L, Stud. Math. 25 (1965) 337–341. [24]L. Weis, Banach lattices with the subsequence splitting property, Proc. Am. Math. Soc. 105 (1989) 87–96.
dspace.entity.typePublication
relation.isAuthorOfPublication99883408-190b-4f61-be14-23d8126a2710
relation.isAuthorOfPublication.latestForDiscovery99883408-190b-4f61-be14-23d8126a2710

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sanchiz_weak.pdf
Size:
419.81 KB
Format:
Adobe Portable Document Format

Collections