Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Lineability, spaceability, and latticeability of subsets of C([0, 1]) and Sobolev spaces

dc.contributor.authorCarmona Tapia, J.
dc.contributor.authorFernández Sánchez, J.
dc.contributor.authorSeoane-Sepúlveda, Juan B.
dc.contributor.authorTrutschnig, W.
dc.date.accessioned2023-06-22T10:44:09Z
dc.date.available2023-06-22T10:44:09Z
dc.date.issued2022-05-21
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2022)
dc.description.abstractThis work is a contribution to the ongoing search for algebraic structures within a nonlinear setting. Here, we shall focus on the study of lineability of subsets of continuous functions on the one hand and within the setting of Sobolev spaces on the other (which represents a novelty in the area of research).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipJunta de Andalucía
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/72543
dc.identifier.doi10.1007/s13398-022-01256-y
dc.identifier.issn1578-7303
dc.identifier.officialurlhttps://doi.org/10.1007/s13398-022-01256-y
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s13398-022-01256-y
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71543
dc.issue.number3
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectIDPGC2018-096422-B-I00; PGC2018-097286-B-I00
dc.relation.projectIDP18-FR-667, FQM194
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu512.64
dc.subject.keywordLineability
dc.subject.keywordAlgebrability
dc.subject.keywordContinuous function
dc.subject.keywordSobolev space
dc.subject.keywordBanach lattice
dc.subject.ucmÁlgebra
dc.subject.ucmAnálisis matemático
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.unesco1201 Álgebra
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleLineability, spaceability, and latticeability of subsets of C([0, 1]) and Sobolev spaces
dc.typejournal article
dc.volume.number116
dcterms.references1. Aron, R.M., Gurariy, V.I., Seoane-Sepúlveda, J.B.: Lineability and spaceability of sets of functions on R. Proc. Am. Math. Soc. 133(3), 795–803 (2005). https://doi.org/10.1090/S0002-9939-04-07533-1 2. Aron, R.M., García-Pacheco, F.J., Pérez-García, D., Seoane-Sepúlveda, J.B.: On dense-lineability of sets of functions on R. Topology 48(2–4), 149–156 (2009). https://doi.org/10.1016/j.top.2009.11.013 3. Aron, R.M., Bernal González, L., Pellegrino, D.M., Seoane-Sepúlveda, J.B.: Lineability: The Search for Linearity in Mathematics, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2016) 4. Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. (N.S.) 51(1), 71–130 (2014). https://doi.org/10.1090/S0273-0979-2013-01421-6 5. Bernal-González, L., Fernández-Sánchez, J., Seoane-Sepúlveda, J.B., Trutschnig, W.: tHighly tempering infinite matrices II: from divergence to convergence via Toeplitz-Silverman matrices. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(4), Paper No. 202, 10 (2020). https://doi.org/10.1007/s13398-020-00934-z 6. Bonilla, A., Muñoz-Fernández, G.A., Prado-Bassas, J.A., Seoane-Sepúlveda, J.B.: Hausdorff and Box dimensions of continuous functions and lineability. Linear Multilinear Algebra 69(4), 593–606 (2021). https://doi.org/10.1080/03081087.2019.1612832 7. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011) 8. Ciesielski, K.C., Natkaniec, T.: Different notions of Sierpinski–Zygmund functions. Rev. Mat. Complut. 34(1), 151–173 (2021). https://doi.org/10.1007/s13163-020-00348-w 9. Ciesielski, K.C., Seoane-Sepúlveda, J.B.: A century of Sierpinski–Zygmund functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4), 3863–3901 (2019). https://doi.org/10.1007/s13398-019-00726-0 10. Ciesielski, K.C., Seoane-Sepúlveda, J.B.: Differentiability versus continuity: restriction and extension theorems and monstrous examples. Bull. Am. Math. Soc. (N.S.) 56(2), 211–260 (2019). https://doi.org/ 10.1090/bull/1635 11. Ciesielski, K.C., Gámez-Merino, J.L., Mazza, L., Seoane-Sepúlveda, J.B.: Cardinal coefficients related to surjectivity, Darboux, and Sierpi ´nski–Zygmund maps. Proc. Am. Math. Soc. 145(3), 1041–1052 (2017). https://doi.org/10.1090/proc/13294 12. Conejero, J.A., Fenoy, M., Murillo-Arcila, M., Seoane-Sepúlveda, J.B.: Lineability within probability theory settings. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111(3), 673–684 (2017). https://doi.org/10.1007/s13398-016-0318-y 13. de Amo, E., Díaz Carrillo, M., Fernández-Sánchez, J.: Singular functions with applications to fractal dimensions and generalized Takagi functions. Acta Appl. Math. 119, 129–148 (2012). https://doi.org/10.1007/s10440-011-9665-z 14. Dovgoshey, O., Martio, O., Ryazanov, V., Vuorinen, M.: The Cantor function. Expo. Math. 24(1), 1–37 (2006). https://doi.org/10.1016/j.exmath.2005.05.002 15. Falcó, J., Grosse-Erdmann, K.-G.: Algebrability of the set of hypercyclic vectors for backward shift operators. Adv. Math. 366, 107082 (2020). https://doi.org/10.1016/j.aim.2020.107082 16. Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications, 3rd edn. Wiley, Chichester (2014) 17. Fernández Sánchez, J., Trutschnig, W.: A note on singularity of a recently introduced family of Minkowski’s question-mark functions. C. R. Math. Acad. Sci. Paris 355(9), 956–959 (2017). https://doi.org/10.1016/j.crma.2017.09.009 (English, with English and French summaries) 18. Fernández-Sánchez, J., Rodríguez-Vidanes, D.L., Seoane-Sepúlveda, J.B., Trutschnig, W.: Lineability, differentiable functions and special derivatives, Banach J. Math. Anal. 15(1), Paper No. 18, 22 (2021). https://doi.org/10.1007/s43037-020-00103-9 19. García, D., Grecu, B.C., Maestre, M., Seoane-Sepúlveda, J.B.: Infinite dimensional Banach spaces of functions with nonlinear properties. Math. Nachr. 283(5), 712–720 (2010). https://doi.org/10.1002/mana.200610833 20. Jiménez-Rodríguez, P.: c0 is isometrically isomorphic to a subspace of Cantor–Lebesgue functions. J. Math. Anal. Appl. 407(2), 567–570 (2013). https://doi.org/10.1016/j.jmaa.2013.05.033 21. Kunze, H., La Torre, D., Mendivil, F., Vrscay, E.R.: Fractal-Based Methods in Analysis. Springer, New York (2012) 22. Oikhberg, T.: A note on latticeability and algebrability. J. Math. Anal. Appl. 434(1), 523–537 (2016). https://doi.org/10.1016/j.jmaa.2015.09.025 23. Schwartz, L.: Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX–X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris (1966) (French) 24. Seoane-Sepúlveda, J.B.: Chaos and lineability of pathological phenomena in analysis, ProQuest LLC, Ann Arbor (2006). Thesis (Ph.D.), Kent State University 25. Shidfar, A., Sabetfakhri, K.: Notes: on the continuity of Van Der Waerden’s function in the holder sense. Am. Math. Mon. 93(5), 375–376 (1986). https://doi.org/10.2307/2323599 26. Trutschnig, W., Fernández Sánchez, J.: Copulas with continuous, strictly increasing singular conditional distribution functions. J. Math. Anal. Appl. 410(2), 1014–1027 (2014). https://doi.org/10.1016/j.jmaa.2013.09.032
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CarmonaTapia2022_Article_LineabilitySpaceabilityAndLatt.pdf
Size:
593.02 KB
Format:
Adobe Portable Document Format

Collections