Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Generic helical edge states due to Rashba spin-orbit coupling in a topological insulator

dc.contributor.authorOrtiz Martín, Laura
dc.contributor.authorMolina Fernández, Rafael Alejandro
dc.date.accessioned2023-06-18T06:54:52Z
dc.date.available2023-06-18T06:54:52Z
dc.date.issued2016-05-20
dc.description©2016 American Physical Society. This work has been funded by Spanish Government projects: FIS2012-33152, FIS2012-34479, MAT2014-58241-P, FIS2015-63770-P and CAM research consortium QUITEMAD+ S2013/ICE-2801. AML acknowledges A. Fernandez Romero and financial support from the Carlsberg Foundation.
dc.description.abstractWe study the helical edge states of a two-dimensional topological insulator without axial spin symmetry due to the Rashba spin-orbit interaction. Lack of axial spin symmetry can lead to so-called generic helical edge states, which have energy-dependent spin orientation. This opens the possibility of inelastic backscattering and thereby nonquantized transport. Here we find analytically the new dispersion relations and the energy dependent spin orientation of the generic helical edge states in the presence of Rashba spin-orbit coupling within the Bernevig-Hughes-Zhang model, for both a single isolated edge and for a finite width ribbon. In the single-edge case, we analytically quantify the energy dependence of the spin orientation, which turns out to be weak for a realistic HgTe quantum well. Nevertheless, finite size effects combined with Rashba spin-orbit coupling result in two avoided crossings in the energy dispersions, where the spin orientation variation of the edge states is very significantly increased for realistic parameters. Finally, our analytical results are found to compare well to a numerical tight-binding regularization of the model.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipCarlsberg Foundation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/38621
dc.identifier.doi10.1103/PhysRevB.93.205431
dc.identifier.issn2469-9950
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.93.205431
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24570
dc.issue.number20
dc.journal.titlePhysical review B
dc.language.isospa
dc.page.final205431_19
dc.page.initial205431_1
dc.publisherAmerican Physical Society
dc.relation.projectIDQUITEMAD+ (S2013/ICE-2801)
dc.relation.projectIDFIS2012-33152
dc.relation.projectIDFIS2012-34479
dc.relation.projectIDMAT2014- 58241-P
dc.relation.projectIDFIS2015-63770-P
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordHgte quantum-Wells
dc.subject.keywordNeutrinos
dc.subject.keywordAbsence
dc.subject.keywordLattice
dc.subject.keywordProof
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleGeneric helical edge states due to Rashba spin-orbit coupling in a topological insulator
dc.typejournal article
dc.volume.number93
dcterms.references1. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005). 2. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005). 3. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011). 4. Y.Ando, J. Phys. Soc. Jpn. 82, 102001 (2013). 5. C. Xu and J. E. Moore, Phys. Rev. B 73, 045322 (2006). 6. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007). 7. A. Roth, C. Brüne, H. Buhmann, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang,Science 325, 294 (2009). 8. C. Brüne, A. Roth, H. Buhmann, E. M. Hankiewicz, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang, Nat. Phys. 8, 485 (2012). 9. M. König, M. Baenninger, A. G. F. Garcia, N. Harjee, B. L. Pruitt, C. Ames, P. Leubner, C. Brüne, H. Buhmann, L. W. Molenkamp, and D. Goldhaber-Gordon, Phys. Rev. X 3, 021003 (2013). 10. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006). 11. C. Liu, T. L. Hughes, X.-L. Qi, K. Wang, and S.-C. Zhang, Phys. Rev. Lett. 100, 236601 (2008). 12. I. Knez, R.-R. Du, and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011). 13. K. Suzuki, Y. Harada, K. Onomitsu, and K. Muraki, Phys. Rev. B 87, 235311 (2013). 14. I. Knez, C. T. Rettner, S.-H. Yang, S. S. P. Parkin, L. Du, R.-R. Du, and G. Sullivan,Phys. Rev. Lett. 112, 026602 (2014). 15. L. Du, I. Knez, G. Sullivan, and R.-R. Du, Phys. Rev. Lett. 114, 096802 (2015). 16. F. Nichele, H. J. Suominen, M. Kjaergaard, C. M. Marcus, E. Sajadi, J. A. Folk, F. Qu, A. J. Beukman, F. K. de Vries, J. van Veen, S. Nadj-Perge, L. P. Kouwenhoven, B.-M. Nguyen, A. A. Kiselev, M. S. Wei Yi, M. J. Manfra, E. M. Spanton, and K. A. Moler, arXiv:1511.01728(2015). 17. G. M. Gusev, Z. D. Kvon, O. A. Shegai, N. N. Mikhailov, S. A. Dvoretsky, and J. C. Portal,Phys. Rev. B 84, 121302 (2011). 18. G. Grabecki, J. Wróbel, M. Czapkiewicz, L. Cywiński, S. Gierałtowska, E. Guziewicz, M. Zholudev, V. Gavrilenko, N. N. Mikhailov, S. A. Dvoretski, F. Teppe, W. Knap, and T. Dietl,Phys. Rev. B 88, 165309 (2013). 19. G. M. Gusev, Z. D. Kvon, E. B. Olshanetsky, A. D. Levin, Y. Krupko, J. C. Portal, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. B 89, 125305 (2014). 20. E. M. Spanton, K. C. Nowack, L. Du, G. Sullivan, R.-R. Du, and K. A. Moler, Phys. Rev. Lett. 113, 026804 (2014). 21. T. L. Schmidt, S. Rachel, F. von Oppen, and L. I. Glazman, Phys. Rev. Lett. 108, 156402 (2012). 22. A. Ström, H. Johannesson, and G. I. Japaridze, Phys. Rev. Lett. 104, 256804 (2010). 23. J. C. Budich, F. Dolcini, P. Recher, and B. Trauzettel, Phys. Rev. Lett. 108, 086602 (2012). 24. F. Crépin, J. C. Budich, F. Dolcini, P. Recher, and B. Trauzettel, Phys. Rev. B 86, 121106 (2012). 25. N. Lezmy, Y. Oreg, and M. Berkooz, Phys. Rev. B 85, 235304 (2012). 26. F. Geissler, F. Crépin, and B. Trauzettel, Phys. Rev. B 89, 235136 (2014). 27. N. Kainaris, I. V. Gornyi, S. T. Carr, and A. D. Mirlin, Phys. Rev. B 90, 075118 (2014). 28. J. I. Väyrynen, M. Goldstein, and L. I. Glazman, Phys. Rev. Lett. 110, 216402 (2013). 29. Y. Tanaka, A. Furusaki, and K. A. Matveev, Phys. Rev. Lett. 106, 236402 (2011). 30. A. M. Lunde and G. Platero, Phys. Rev. B 86, 035112 (2012). 31. E. Eriksson, A. Ström, G. Sharma, and H. Johannesson, Phys. Rev. B 86, 161103 (2012). 32. E. Eriksson, Phys. Rev. B 87, 235414 (2013). 33. B. Probst, P. Virtanen, and P. Recher, Phys. Rev. B 92, 045430 (2012). 34. A. M. Lunde and G. Platero, Phys. Rev. B 88, 115411 (2013). 35. D. G. Rothe, R. W. Reinthaler, C.-X. Liu, L. W. Molenkamp, S.-C. Zhang, and E. M. Hankiewicz, New J. Phys. 12, 065012 (2010). 36. P. Virtanen and P. Recher, Phys. Rev. B 85, 035310 (2012). 37. D. G. Rothe and E. M. Hankiewicz, Phys. Rev. B 89, 035418 (2014). 38. M. König, H. Buhmann, L. W. Molenkamp, T. L. Hughes, C.-X. Liu, X. L. Qi, and S. C. Zhang, J. Phys. Soc. Jpn. 77, 031007 (2008). 39. P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B 86, 125323 (2012). 40. C. P. Orth, G. Strübi, and T. L. Schmidt, Phys. Rev. B 88, 165315 (2013). 41. C. P. Orth, R. P. Tiwari, T. Meng, and T. L. Schmidt, Phys. Rev. B 91, 081406 (2015). 42. A. Rod, T. L. Schmidt, and S. Rachel, Phys. Rev. B 91, 245112 (2015). 43. B. Zhou, H.-Z. Lu, R.-L. Chu, S.-Q. Shen, and Q. Niu, Phys. Rev. Lett. 101, 246807 (2008). 44. C. Liu and S.-C. Zhang, Models and Materials for Topological Insulators, edited by M. Franz and L. Molenkamp, Topological Insulators Vol. 7 (Springer, Vancouver, 2013). 45. S.-Q. Shen, Topological Insulators (Springer-Verlag, Hong Kong, 2011). 46. M. Wada, S. Murakami, F. Freimuth, and G. Bihlmayer, Phys. Rev. B 83, 121310 (2011). 47. B. A. Bernevig and with T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, New York, 2013). 48. P. Michetti, P. H. Penteado, J. C. Egues, and P. Recher, Semicond. Sci. Technol. 27, 124007 (2012). 49. V. Krueckl and K. Richter, Phys. Rev. Lett. 107, 086803 (2011). 50. W.-Y. Shan, H.-Z. Lu, and S.-Q. Shen, New J. Phys. 12, 043048 (2010). 51. Y. Takagaki, Phys. Rev. B 90, 165305 (2014). 52. A. Medhi and V. B. Shenoy, J. Phys.: Condens. Matter 24, 355001 (2012). 53. J. Linder, T. Yokoyama, and A. Sudbø, Phys. Rev. B 80, 205401 (2009). 54. C.-X. Liu, H. J. Zhang, B. Yan, X.-L. Qi, T. Frauenheim, X. Dai, Z. Fang, and S.-C. Zhang,Phys. Rev. B 81, 041307 (2010). 55. H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu, and S.-Q. Shen, Phys. Rev. B 81, 115407 (2010). 56. J. J. Sakurai, Modern Quantum Mechanics (Addison Wesley, Geneva, 1993). 57. S. Murakami, S. Iso, Y. Avishai, M. Onoda, and N. Nagaosa, Phys. Rev. B 76, 205304 (2007). 58. M. Berry and R. J. Mondragon, Proc. R. Soc. London A 412, 53 (1987). 59. J. A. Fürst, J. G. Pedersen, C. Flindt, N. A. Mortensen, M. Brandbyge, T. G. Pedersen, and A.-P. Jauho, New J. Phys. 11, 095020 (2009). 60. P. Michetti and P. Recher, Phys. Rev. B 83, 125420 (2011). 61. Y. Baum, T. Posske, I. C. Fulga, B. Trauzettel, and A. Stern, Phys. Rev. Lett. 114, 136801 (2015). 62. K.-I. Imura, A. Yamakage, S. Mao, A. Hotta, and Y. Kuramoto, Phys. Rev. B 82, 085118 (2010). 63. H. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 (1981). 64. H. Nielsen and M. Ninomiya, Nucl. Phys. B 193, 173 (1981). 65. R. Winkler, Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems, Springer Tracts in Modern Physics (Springer, Aarhus, 2003).
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OrtizMartínL 01 libre.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format

Collections