Robust inference for one‐shot device testing data under exponential lifetime model with multiple stresses

dc.contributor.authorBalakrishnan, Narayanaswamy
dc.contributor.authorCastilla González, Elena María
dc.contributor.authorMartín Apaolaza, Nirian
dc.contributor.authorPardo Llorente, Leandro
dc.date.accessioned2023-06-17T08:28:23Z
dc.date.available2023-06-17T08:28:23Z
dc.date.issued2020-05-20
dc.description"This is the pre-peer reviewed version of the following article: Balakrishnan, N, Castilla, E, Martín, N, Pardo, L. Robust inference for one-shot device testing data under exponential lifetime model with multiple stresses. Qual Reliab Engng Int. 2020; 36: 1916-1930 , which has been published in final form at https://doi.org/10.1002/qre.2665. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."
dc.description.abstractIntroduced robust density-based estimators in the context of one-shot devices with exponential lifetimes under a single stress factor. However, it is usual to have several stress factors in industrial experiments involving one-shot devices. In this paper, the weighted minimum density power divergence estimators (WMDPDEs) are developed as a natural extension of the classical maximum likelihood estimators (MLEs) for one-shot device testing data under exponential lifetime model with multiple stresses. Based on these estimators, Wald-type test statistics are also developed. Through a simulation study, it is shown that some WMDPDEs have a better performance than the MLE in relation to robustness. Two examples with multiple stresses show the usefulness of the model and, in particular, of the proposed estimators, both in engineering and medicine.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipMinisterio de Educacion, Cultura y Deporte
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73056
dc.identifier.citation1. Balakrishnan, N, Castilla, E, Martín, N and Pardo, L. Robust estimators and test-statistics for one-shot device testing under the exponential distribution IEEE trans. on Information Theory 2019; 65(5), 3080-3096. 2. Fan, TH, Balakrishnan, N and Chang, CC. The Bayesian approach for highly reliable electroexplosive.devices using one-shot device testing. Journal of Statistical Computation and Simulation 2009; 79(9), 1143-1154. 3. Olwell, DH and Sorell, AA. Warranty calclations for missiles with only current-status data, using Bayesian methods. Proceedings of the Annual Reliability and Maintainability Symp, 2001; 133-138. 4. Newby, M. Monitoring and maintenance of sparses and one shot devices. Reliability Engineering and System Safety 2008; 93, 588-594. 5. Balakrishnan, N and Ling, MH. EM algorithm for one-shot device testing under the exponential distribution. Computational Statistics & Data Analysis 2012; 56(3), 502-509. 6. Balakrishnan, N and Ling, MH. Multiple-stress model for one-shot device testing data under exponential distribution. IEEE Transactions on Reliability 2012; 61(3), 809-821. 7. Balakrishnan, N and Ling, MH. Expectation maximization algorithm for one shot device accelerated life testing with Weibull lifetimes, and variable parameters over stress. IEEE Transactions on Reliability 2013; 62(2), 537-551. 8. Balakrishnan, N and Ling, MH. Gamma lifetimes and one-shot device testing analysis. Reliability Engineering and System Safety 2014; 126, 54-64. 9. Fan, TH and Chang, CC. A Bayesian Zero-failure Reliability Demonstration Test of High Quality Electro-explosive Devices. Quality and Reliability Engineering International 2009; 25, 913-920. 10. King, C. Robustness of asymptotic accelerated life tests plans to small-sample settings. Quality.and Reliability Engineering International 2019; 35, 7, 2178-2201. 11. Han, D. Optimal design of a simple stepstress accelerated life test under progressive type I censoring with nonuniform durations for exponential lifetimes. Quality and Reliability Engineering International 2019; 35, 5, 1297-1312. 12. Pardo, L. Statistical Inference Based on Divergence Measures. Chapman & Hall/ CRC Press, Boca Raton, Florida 2006. 13. Basu, A, Mandal, A, Martín, N and Pardo, L. Generalized Wald-type tests based on minimum density power divergence estimators. Statistics 2016; 50, 1-26. 14. Ghosh, A, Mandal, A, Mart��n, N and Pardo, L. Influence analysis of robust Wald-type tests. Journal of Multivariate Analysis 2016; 147, 102-126. 15. Kodell RL, Nelson CJ. An illness-death model for the study of the carcinogenic process using survival/sacrifi�ce data. Biometrics 1980; 36, 267-277. 16. Balakrishnan, N, Castilla, E, Martín, N and Pardo, L. Robust estimators for one-shot device testing data under gamma lifetime model with an application to a tumor toxicological data. Metrika 2019; 82(8), 991-1019. 17. Balakrishnan, N, Castilla, E, Martín, N and Pardo, L. Robust inference for one-shot device testing data under Weibull lifetime model. IEEE transactions on Reliability 2019; DOI:10.1109/TR.2019.2954385. 18. Warwick J, Jones MC. Choosing a robustness tuning parameter. Journal of Statistical Computation and Simulation 2005; 75: 581-588 19. Ghosh, A and Basu, A. Robust estimation for independent non-homogeneous observations using density power divergence with applications to linear regression. Electronic Journal of Statistics 2013; 7, 2420-2456. 20. Hong, C, Kim, Y. Automatic selection of the tuning parameter in the minimum density power divergence estimation. J. Korean Stat. Soc 2001; 30, 453-465
dc.identifier.doi10.1002/qre.2665
dc.identifier.issn0748-8017
dc.identifier.officialurlhttps://doi.org/10.1002/qre.2665
dc.identifier.relatedurlhttps://onlinelibrary.wiley.com/doi/full/10.1002/qre.2665
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7223
dc.issue.number6
dc.journal.titleQuality and Reliability Engineering International
dc.language.isoeng
dc.page.final1930
dc.page.initial1916
dc.publisherWiley
dc.relation.projectIDPGC2018- 095194-B-I00
dc.relation.projectIDFPU16/03104
dc.rightsAtribución-NoComercial 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/es/
dc.subject.cdu519.2
dc.subject.keywordExponential distribution
dc.subject.keywordMinimum density power divergence estimator
dc.subject.keywordMultiple stresses
dc.subject.keywordOne-shot devices
dc.subject.keywordRobustness
dc.subject.keywordWald-type tests
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.ucmProbabilidades (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleRobust inference for one‐shot device testing data under exponential lifetime model with multiple stresses
dc.typejournal article
dc.volume.number36
dspace.entity.typePublication
relation.isAuthorOfPublication9a67ded0-2436-44f5-bdc9-07033ae6f956
relation.isAuthorOfPublication1705b043-bb96-4d44-8e13-1c2238cf1717
relation.isAuthorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isAuthorOfPublication.latestForDiscovery9a67ded0-2436-44f5-bdc9-07033ae6f956
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
castilla_robust_inference.pdf
Size:
1022 KB
Format:
Adobe Portable Document Format
Collections