Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Singularity confinement for matrix discrete Painleve equations

dc.contributor.authorCassatella-Contra, Giovanni A
dc.contributor.authorMañas Baena, Manuel Enrique
dc.contributor.authorTempesta, Piergiulio
dc.date.accessioned2023-06-19T14:54:45Z
dc.date.available2023-06-19T14:54:45Z
dc.date.issued2014-09
dc.description©IOP Publishing Ltd. PT has been supported by Spanish 'Ministerio de Ciencia e Innovacion' grant FIS2011-00260. GC-C benefitted from the financial support of a 'Accion Especial' Ref. AE1/13-18837 of the Universidad Complutense de Madrid. MM acknowledges economical support from the Spanish 'Ministerio de Economia y Competitividad' research project MTM2012-36732-C03-01, Ortogonalidad y aproximacion; Teoria y Aplicaciones.
dc.description.abstractWe study the analytic properties of a matrix discrete system introduced by Cassatella and Manas (2012 Stud. Appl. Math. 128 252-74). The singularity confinement for this system is shown to hold generically, i.e. in the whole space of parameters except possibly for algebraic subvarieties. This paves the way to a generalization of Painleve analysis to discrete matrix models.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovacion
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipMinisterio de Economia y Competitividad
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30967
dc.identifier.doi10.1088/0951-7715/27/9/2321
dc.identifier.issn0951-7715
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0951-7715/27/9/2321
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/1311.0557
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34735
dc.issue.number9
dc.journal.titleNonlinearity
dc.language.isoeng
dc.page.final2335
dc.page.initial2321
dc.publisherIOP Publishing Ltd
dc.relation.projectIDFIS2011-00260
dc.relation.projectIDAE1/13-18837
dc.relation.projectIDMTM2012-36732-C03-01
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordOrthogonal polynomials
dc.subject.keywordDifference-equations
dc.subject.keywordIntegrable systems
dc.subject.keywordProperty
dc.subject.keywordGravity
dc.subject.keywordGraphs
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleSingularity confinement for matrix discrete Painleve equations
dc.typejournal article
dc.volume.number27
dcterms.references[1] M. J. Ablowitz, R. Halburd, B. Herbst, On the extension of the Painleve property to difference equations. Nonlinearity 13, 889-905 (2000). [2] M. Adler, P. van Moerbeke, P. Vanhaecke, Singularity confinement for a class of m-th order difference equations of combinatorics. Philosophical Transactions of the Royal Society of London A 366, 877-922 (2008). [3] D. Arinkin, A. Borodin, Moduli spaces of d-connections and difference Painlevé equations. Duke Mathematical Journal 134, 515-556 (2006). [4] M. P. Bellon, C.-M. Viallet, Algebraic entropy, Communications in Mathematical Physics 204, 425-437 (1999). [5] A. I. Bobenko, Y. Suris, Discrete differential geometry. Integrable structure, Graduate Studies in Mathematics, 98. American Mathematical Society, Providence, RI, xxiv+404 pp. (2008). [6] A. I. Bobenko and Y. Suris, Integrable systems on quad–graphs, International Mathematical Research Notices 11, 573-611 (2002). [7] G. A. Cassatella-Contra, M. Mañas, Riemann–Hilbert problems, matrix orthogonal polynomals and discrete matrix equations with singularity confinement, Stud. Appl. Math, 128, 252-274 (2012). [8] R. Conte (Editor), The Painlevé Property. One Century Later, Springer–Verlag, New York (1999). [9] I. Dynnikov and S. P. Novikov, Geometry of the triangle equation on two–manifolds, Moscow Mathematical Journal 3, no. 2, 419-438 (2003). [10] A. S. Fokas, A. R. Its, A. V. Kitaev, Discrete Painleve equations and their appearance in quantum gravity, Communications in Mathematical Physics 142, 313344 (1991). [11] G. Freud, On the coefficients in the recursion formulae of orthogonal polynomials, Proceedings of the Royal Irish Academy A 76, 1-6 (1976). [12] B. Grammaticos, A. Ramani and V. Papageorgiou, Do integrable mappings have the Painlevé property? Physical Review Letters 67, 1825-1828 (1991). [13] J. Hietarinta and C. Viallet, Physical Review Letters 81, (1998) 325-328. [14] G. ’t Hooft, Quantization of point particles in (2+1)–dimensional gravity and spacetime discreteness, Classical and Quantum Gravity 13, 1023–1039 (1996). [15] S. Lafortune, A. Ramani, B. Grammaticos, Y. Ohta, K. M. Tamizhmani, Blending two discrete integrability criteria: singularity confinement and algebraic entropy. Bäcklund and Darboux transformations. The geometry of solitons (Halifax, NS, 1999), 299311, CRM Proceedings and Lecture Notes, 29, Amererican Mathematical Society, Providence, RI, 2001. [16] J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Communications in Mathematical Physics 139, 217-243 (1991). [17] M. E. J. Newman, Networks, Oxford University Press, 2010. [18] S. P. Novikov, A. S. Shvarts, Discrete Lagrangian systems on graphs. Symplecto–topological properties (Russian), Uspekhi Matematicheskikh Nauk 54, no. 1 (325), 257-258 (1999); translation in Russian Math. Surveys 54, no. 1, 258–259 (1999). [19] P. Painlevé, Leçons sur la théorie analytique des équations différentielles (Leçons de Stockholm, delivered in 1895), Hermann, Paris (1897). Reprinted in Œuvres de Paul Painlevé, vol. I, Éditions du CNRS, Paris (1973). [20] A. Ramani, B. Grammaticos, T. Tamizhmani, K. M. Tamizhmani, The road to the discrete analogue of the Painleve property: Nevanlinna meets singularity confinement. Computers & Mathematics with Applications 45, 10011012 (2003). [21] Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, Vol. 219. Basel: Birkhäuser, 2003. [22] P. Tempesta, Integrable maps from Galois differential algebras, Borel transforms and number sequences, Journal of Differential Equations, 255, 2981-2995 (2013). [23] T. Tsuda, Universal character and q-difference Painlevé equations. Mathematische Annalen 345, 395-415 (2009).
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication46e9a666-a5cf-44c3-8726-7cbe2c61bd1a
relation.isAuthorOfPublication.latestForDiscovery46e9a666-a5cf-44c3-8726-7cbe2c61bd1a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas71preprint.pdf
Size:
189.36 KB
Format:
Adobe Portable Document Format

Collections