Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Radon-Nikodým theorem in bornological spaces. (Spanish: El teorema de Radon-Nikodym en espacios bornológicos).

Loading...
Thumbnail Image

Full text at PDC

Publication date

1981

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Real Academia de Ciencias Exactas, Físicas y Naturales
Citations
Google Scholar

Citation

Abstract

The author presents some Radon-Nikodým theorems—i.e., if (Ω,Σ,μ) is a finite measurable space and m is a μ -continuous vector measure then {m(A)/μ(A):A∈Σ} being compact in some sense implies that m is an integral. Theorem 6: One has a Radon-Nikodým theorem for Fréchet spaces. Theorem 8: One has a Radon-Nikodým theorem for vector measures of finite variation and for a quasicomplete space E with the metrizable Pietsch property. (E is said to have the metrizable Pietsch property if X⊂E N with ∑p(x n )<∞ for each (x n )∈X and each continuous seminorm p implies the existence of a B , B⊂E , absolutely convex, bounded and metrizable, with gauge P B , and such that ∑P B (y n )≤1 for each (y n )∈X .) G. Y. H. Chi proved this result [Measure theory (Oberwolfach, 1975), pp. 199–210, Lecture Notes in Math., 541, Springer, Berlin, 1976; with a compactness hypothesis for m(A)/μ(A) , instead of weak compactness. Unfortunately the proofs are not quite clear or even quite exact. In the reference to the Grothendieck book there is a B instead of an 8.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections