The Radon-Nikodým theorem in bornological spaces. (Spanish: El teorema de Radon-Nikodym en espacios bornológicos).
dc.contributor.author | Bombal Gordón, Fernando | |
dc.date.accessioned | 2023-06-21T02:03:47Z | |
dc.date.available | 2023-06-21T02:03:47Z | |
dc.date.issued | 1981 | |
dc.description.abstract | The author presents some Radon-Nikodým theorems—i.e., if (Ω,Σ,μ) is a finite measurable space and m is a μ -continuous vector measure then {m(A)/μ(A):A∈Σ} being compact in some sense implies that m is an integral. Theorem 6: One has a Radon-Nikodým theorem for Fréchet spaces. Theorem 8: One has a Radon-Nikodým theorem for vector measures of finite variation and for a quasicomplete space E with the metrizable Pietsch property. (E is said to have the metrizable Pietsch property if X⊂E N with ∑p(x n )<∞ for each (x n )∈X and each continuous seminorm p implies the existence of a B , B⊂E , absolutely convex, bounded and metrizable, with gauge P B , and such that ∑P B (y n )≤1 for each (y n )∈X .) G. Y. H. Chi proved this result [Measure theory (Oberwolfach, 1975), pp. 199–210, Lecture Notes in Math., 541, Springer, Berlin, 1976; with a compactness hypothesis for m(A)/μ(A) , instead of weak compactness. Unfortunately the proofs are not quite clear or even quite exact. In the reference to the Grothendieck book there is a B instead of an 8. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17976 | |
dc.identifier.issn | 0034-0596 | |
dc.identifier.officialurl | http://www.rac.es/4/4_7_1.php?pid=Revistas:REV_20091030_00425&pageNum=1 | |
dc.identifier.relatedurl | http://www.rac.es/0/0_1.php | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64748 | |
dc.issue.number | 1 | |
dc.journal.title | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid | |
dc.language.iso | spa | |
dc.page.final | 154 | |
dc.page.initial | 139 | |
dc.publisher | Real Academia de Ciencias Exactas, Físicas y Naturales | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | bornological spaces | |
dc.subject.keyword | Radon-Nikodym theorem | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | The Radon-Nikodým theorem in bornological spaces. (Spanish: El teorema de Radon-Nikodym en espacios bornológicos). | |
dc.type | journal article | |
dc.volume.number | 75 | |
dcterms.references | BOMBAL GORDON, F. (1981). Medida e integración en espacios bornológicos. Rev. R. Acad. Ci. Madrid, 75, 115-138. CHI, G. Y. H. (1975). A geometrie characterization of Fréchet spaces with the Radon-Nikodym property. Proc. Of the Amer. Math. Soc., 48, 371-380. CHI, G. Y. H. (1976). On the Radon-Nikodym theorem in locally convex spaces. En “Measure theory”, Lect. Notes in Math., n.° 541. Springer, Berlin. DIESTEL, J. and UHL, J. Jr. (1977). Vector Measures. Math. Surveys, 15. Amer. Math. Soc., Providence, R. I. GILLIAM, D. (1976). Geometry and the Radon-Nikodym theorem in strict Mackey convergence spaces. Pacific Journal of Math., 65, 353-364. GROTHENDIECK, A. (1973). Topological vector spaces. Gordon and Breach, New York. HOGBE-NLEND, H. (1971). Théorie des bornologies et applications. Lect. Notes in Math., n.° 213. Springer, Berlin. LARMAN, D. G. and ROGERS, C. A. (1973). The normability of metrizable sets. Bull. London Math. Soc., 5, 39-48. METIVIER, M. (1967). Martingales á valeurs vectorielles. Applications á la dérivation des mesures vectorielles. Ann. Inst. Fourier, 2, 175-208. MOEDANO,S.and UHL,J.Jr.(1971). Radon-Nikodym theorems for thé Bochner and Pettis integrals.Pac.J.of Math., 38, 531-536. PIETSCH, A. (1972). Nuclear locally convex spaces. Springer, Berlin. RIEFFEL, M. A. (1968). The Radon-Nikodym theorem for the Bochner integral. Trans. Amer. Math. Soc., J31, 466-487. SAAB, E. (1976). Sur la propriété de Radon-Nikodym dans les spaces localement convexes de type (BM). C. R. Acad. Paris, t. 283, Ser. A, 899-902. SCHAEFER, H. H. (1971). Topological vector spaces. Springer, Berlin. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1