Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

The Radon-Nikodým theorem in bornological spaces. (Spanish: El teorema de Radon-Nikodym en espacios bornológicos).

dc.contributor.authorBombal Gordón, Fernando
dc.date.accessioned2023-06-21T02:03:47Z
dc.date.available2023-06-21T02:03:47Z
dc.date.issued1981
dc.description.abstractThe author presents some Radon-Nikodým theorems—i.e., if (Ω,Σ,μ) is a finite measurable space and m is a μ -continuous vector measure then {m(A)/μ(A):A∈Σ} being compact in some sense implies that m is an integral. Theorem 6: One has a Radon-Nikodým theorem for Fréchet spaces. Theorem 8: One has a Radon-Nikodým theorem for vector measures of finite variation and for a quasicomplete space E with the metrizable Pietsch property. (E is said to have the metrizable Pietsch property if X⊂E N with ∑p(x n )<∞ for each (x n )∈X and each continuous seminorm p implies the existence of a B , B⊂E , absolutely convex, bounded and metrizable, with gauge P B , and such that ∑P B (y n )≤1 for each (y n )∈X .) G. Y. H. Chi proved this result [Measure theory (Oberwolfach, 1975), pp. 199–210, Lecture Notes in Math., 541, Springer, Berlin, 1976; with a compactness hypothesis for m(A)/μ(A) , instead of weak compactness. Unfortunately the proofs are not quite clear or even quite exact. In the reference to the Grothendieck book there is a B instead of an 8.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17976
dc.identifier.issn0034-0596
dc.identifier.officialurlhttp://www.rac.es/4/4_7_1.php?pid=Revistas:REV_20091030_00425&pageNum=1
dc.identifier.relatedurlhttp://www.rac.es/0/0_1.php
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64748
dc.issue.number1
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid
dc.language.isospa
dc.page.final154
dc.page.initial139
dc.publisherReal Academia de Ciencias Exactas, Físicas y Naturales
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordbornological spaces
dc.subject.keywordRadon-Nikodym theorem
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleThe Radon-Nikodým theorem in bornological spaces. (Spanish: El teorema de Radon-Nikodym en espacios bornológicos).
dc.typejournal article
dc.volume.number75
dcterms.referencesBOMBAL GORDON, F. (1981). Medida e integración en espacios bornológicos. Rev. R. Acad. Ci. Madrid, 75, 115-138. CHI, G. Y. H. (1975). A geometrie characterization of Fréchet spaces with the Radon-Nikodym property. Proc. Of the Amer. Math. Soc., 48, 371-380. CHI, G. Y. H. (1976). On the Radon-Nikodym theorem in locally convex spaces. En “Measure theory”, Lect. Notes in Math., n.° 541. Springer, Berlin. DIESTEL, J. and UHL, J. Jr. (1977). Vector Measures. Math. Surveys, 15. Amer. Math. Soc., Providence, R. I. GILLIAM, D. (1976). Geometry and the Radon-Nikodym theorem in strict Mackey convergence spaces. Pacific Journal of Math., 65, 353-364. GROTHENDIECK, A. (1973). Topological vector spaces. Gordon and Breach, New York. HOGBE-NLEND, H. (1971). Théorie des bornologies et applications. Lect. Notes in Math., n.° 213. Springer, Berlin. LARMAN, D. G. and ROGERS, C. A. (1973). The normability of metrizable sets. Bull. London Math. Soc., 5, 39-48. METIVIER, M. (1967). Martingales á valeurs vectorielles. Applications á la dérivation des mesures vectorielles. Ann. Inst. Fourier, 2, 175-208. MOEDANO,S.and UHL,J.Jr.(1971). Radon-Nikodym theorems for thé Bochner and Pettis integrals.Pac.J.of Math., 38, 531-536. PIETSCH, A. (1972). Nuclear locally convex spaces. Springer, Berlin. RIEFFEL, M. A. (1968). The Radon-Nikodym theorem for the Bochner integral. Trans. Amer. Math. Soc., J31, 466-487. SAAB, E. (1976). Sur la propriété de Radon-Nikodym dans les spaces localement convexes de type (BM). C. R. Acad. Paris, t. 283, Ser. A, 899-902. SCHAEFER, H. H. (1971). Topological vector spaces. Springer, Berlin.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bombal40.pdf
Size:
629.33 KB
Format:
Adobe Portable Document Format

Collections