Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Smooth extension of functions on a certain class of non-separable Banach spaces

dc.contributor.authorJiménez Sevilla, María Del Mar
dc.contributor.authorSánchez González, Luis
dc.date.accessioned2023-06-20T00:06:46Z
dc.date.available2023-06-20T00:06:46Z
dc.date.issued2011
dc.description.abstractLet us consider a Banach space X with the property that every real-valued Lipschitz function f can be uniformly approximated by a Lipschitz, C1-smooth function g with Lip(g)⩽CLip(f) (with C depending only on the space X). This is the case for a Banach space X bi-Lipschitz homeomorphic to a subset of c0(Γ), for some set Γ, such that the coordinate functions of the homeomorphism are C1-smooth (Hájek and Johanis, 2010 . Then, we prove that for every closed subspace Y⊂X and every C1-smooth (Lipschitz) function f:Y→R, there is a C1-smooth (Lipschitz, respectively) extension of f to X. We also study C1-smooth extensions of real-valued functions defined on closed subsets of X. These results extend those given in Azagra et al. (2010) [4] to the class of non-separable Banach spaces satisfying the above property.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/13817
dc.identifier.doi10.1016/j.jmaa.2010.12.057
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/0022247X
dc.identifier.urihttps://hdl.handle.net/20.500.14352/41997
dc.issue.number1
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final183
dc.page.initial173
dc.publisherElsevier
dc.relation.projectIDMTM2009-07848.
dc.relation.projectIDAP2007-00868
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordSmooth extensions
dc.subject.keywordSmooth approximations
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleSmooth extension of functions on a certain class of non-separable Banach spaces
dc.typejournal article
dc.volume.number378
dcterms.references[[1] R. Aron and P. Berner, A Hahn-Banach extension theorem for analytic maps, Bull. Soc. Math. France 106 (1978), 3-24. [2] C.J. Atkin, Extension of smooth functions in infinite dimensions I: unions of convex sets, Studia Math. 146 (3) (2001), 201-226. [3] D. Azagra, R. Fry and A. Montesinos, Perturbed Smooth Lipschitz Extensions of Uniformly Continuous Functions on Banach Spaces, Proc. Amer. Math. Soc. 133 (2005), 727-734. [4] D. Azagra, J. Ferrera, F. López-Mesas, Y. Rangel Smooth approximation of Lipschitz functions on Riemannian manifolds, J. Math. Anal. Appl. 326 (2) (2007), 1370-1378. [5] D. Azagra, R. Fry and L. Keener, Smooth extension of functions on separable Banach spaces, Math. Ann. 347 (2) (2010), 285-297. [6] D. Azagra, R. Fry and L. Keener, Corrigendum to \Smooth extension of functions on separable Banach spaces", preprint. [7] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics vol. 64, (1993). [8] M. Fabian, P. Habala, P. Hájek, V.M. Santalucía, J. Pelant and V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Math. vol. 8, Springer-Verlag, New York, (2001). [9] R. Fry, Approximation by functions with bounded derivative on Banach spaces, Bull. Austr. Math. Soc. 69 (2004), 125-131. [10] P. Hájek and M. Johanis, Uniformly Gâteaux smooth approximation on c0(Γ), J. Math. Anal. Appl. 350 (2009), 623-629. [11] P. Hájek and M. Johanis, Smooth approximations, J. Funct. Anal. 259 (3) (2010), 561-582. [12] K. John, H. Torunczyk and V. Zizler, Uniformly smooth partitions of unity on superreflexive Banach spaces, Studia Math. 70 (1981), 129-137. [13] J.M. Lasry and P.L. Lions, A remark on regularization in Hilbert spaces, Israel J. Math. 55 (3) (1986), 257-266. [14] J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel J. Math. 9 (1971), 293-345. [15] N. Moulis, Approximation de fonctions differentiables sur certains espaces de Banach, Ann. Inst. Fourier (Grenoble) 21 (1971), 293-345. [16] M.E. Rudin, A new proof that metric spaces are paracompact, Proc. Amer. Math. Soc. 20 (2) (1969), 603.
dspace.entity.typePublication
relation.isAuthorOfPublication36c2a4e7-ac6d-450d-b64c-692a94ff6361
relation.isAuthorOfPublication.latestForDiscovery36c2a4e7-ac6d-450d-b64c-692a94ff6361

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2010smooth.pdf
Size:
253.01 KB
Format:
Adobe Portable Document Format

Collections