Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Double Coverings Of Klein Surfaces By A Given Riemann Surface

Loading...
Thumbnail Image

Full text at PDC

Publication date

2002

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science
Citations
Google Scholar

Citation

Abstract

Let X be a Riemann surface. Two coverings p1 : X → Y1 and p2 : X → Y2 are said to be equivalent if p2 =’p1 for some conformal homeomorphism ’: Y1 → Y2. In this paper we determine, for each integer g¿2, the maximum number R(g) of inequivalent rami>ed coverings between compact Riemann surfaces X → Y of degree 2; where X has genus g. Moreover, for in>nitely many values of g, we compute the maximum number U(g) of inequivalent unrami>ed coverings X → Y of degree 2 where X has genus g and admits no rami>ed covering. For the remaining values of g, the computation of U(g) relies on a likely conjecture on the number of conjugacy classes of 2-groups. We also extend these results to double coverings X → Y , where. Y is now a proper Klein surface. In the language of algebraic geometry, this means we calculate the number of real forms admitted by the complex algebraic curve X . c 2002 Elsevier Science B.V. All rights reserved.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections