Radial solutions of a semilinear elliptic problem
Loading...
Download
Full text at PDC
Publication date
1991
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Cambridge University Press
Citation
Abstract
We analyse the set of nonnegative, global, and radial solutions (radial solutions, for short) of the equation -Δu + u(p) = f in R(N), N ≥ 1, where 0 < p < 1, and f element-of L(loc)1(R(N)) is a radial and almost everywhere nonnegative function. We show that radial solutions of (E) exist if f(r) = o(r2p/1-p) or if f(r) ≈ cr2p/1-p as r --> ∞, where [GRAPHICS] When f(r) = c*r2p/1-p + h(r) with h(r) = o(r2p/1-p) as r --> ∞, radial solutions continue to exist if h(r) is sufficiently small at infinity. Existence, however, breaks down if h(r) > 0, [GRAPHICS] Whenever they exist, radial solutions are characterised in terms of their asymptotic behaviour as r --> ∞.