Radial solutions of a semilinear elliptic problem
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.author | Velázquez, J.J. L. | |
dc.date.accessioned | 2023-06-20T17:03:59Z | |
dc.date.available | 2023-06-20T17:03:59Z | |
dc.date.issued | 1991-01 | |
dc.description.abstract | We analyse the set of nonnegative, global, and radial solutions (radial solutions, for short) of the equation -Δu + u(p) = f in R(N), N ≥ 1, where 0 < p < 1, and f element-of L(loc)1(R(N)) is a radial and almost everywhere nonnegative function. We show that radial solutions of (E) exist if f(r) = o(r2p/1-p) or if f(r) ≈ cr2p/1-p as r --> ∞, where [GRAPHICS] When f(r) = c*r2p/1-p + h(r) with h(r) = o(r2p/1-p) as r --> ∞, radial solutions continue to exist if h(r) is sufficiently small at infinity. Existence, however, breaks down if h(r) > 0, [GRAPHICS] Whenever they exist, radial solutions are characterised in terms of their asymptotic behaviour as r --> ∞. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CICYT | |
dc.description.sponsorship | EEC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17132 | |
dc.identifier.doi | 10.1017/S0308210500029115 | |
dc.identifier.issn | 0308-2105 | |
dc.identifier.officialurl | http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8244935 | |
dc.identifier.relatedurl | http://journals.cambridge.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57715 | |
dc.issue.number | 3-4 | |
dc.journal.title | Proceedings of the Royal Society of Edinburgh: Section A Mathematics | |
dc.language.iso | eng | |
dc.page.final | 326 | |
dc.page.initial | 305 | |
dc.publisher | Cambridge University Press | |
dc.relation.projectID | PB86-0112-C0202 | |
dc.relation.projectID | SC1-0019-C | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Equation | |
dc.subject.keyword | RN | |
dc.subject.keyword | set of nonnegative | |
dc.subject.keyword | global and radial solutions | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Radial solutions of a semilinear elliptic problem | |
dc.type | journal article | |
dc.volume.number | 118 | |
dcterms.references | R. Bellman. Stability theory of differential equations (New York: Dover, 1953). H. Brezis. Semilinear equations in RN without conditions at infinity. Appl. Math. Optim. 12 (1984), 271-282. T. Gallouët and J. M. Morel. The equation -Δu + |u|α-1u = f for 0 ≤ α ≤ 1. J. Nonlinear Anal. 11 (1987), 893-912. M. A. Herrero and J. J. L. Velázquez. On the dynamics of a semilinear heat equation with strong absorption. Comm. Partial Differential Equations 14 (1989), 1653-1715. M. Murata. Structure of positive solutions to (-Δ + V)u=0 in RN. Duke Math J. 53 (1986), 869-943. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1