Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Radial solutions of a semilinear elliptic problem

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T17:03:59Z
dc.date.available2023-06-20T17:03:59Z
dc.date.issued1991-01
dc.description.abstractWe analyse the set of nonnegative, global, and radial solutions (radial solutions, for short) of the equation -Δu + u(p) = f in R(N), N ≥ 1, where 0 < p < 1, and f element-of L(loc)1(R(N)) is a radial and almost everywhere nonnegative function. We show that radial solutions of (E) exist if f(r) = o(r2p/1-p) or if f(r) ≈ cr2p/1-p as r --> ∞, where [GRAPHICS] When f(r) = c*r2p/1-p + h(r) with h(r) = o(r2p/1-p) as r --> ∞, radial solutions continue to exist if h(r) is sufficiently small at infinity. Existence, however, breaks down if h(r) > 0, [GRAPHICS] Whenever they exist, radial solutions are characterised in terms of their asymptotic behaviour as r --> ∞.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.sponsorshipEEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17132
dc.identifier.doi10.1017/S0308210500029115
dc.identifier.issn0308-2105
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8244935
dc.identifier.relatedurlhttp://journals.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57715
dc.issue.number3-4
dc.journal.titleProceedings of the Royal Society of Edinburgh: Section A Mathematics
dc.language.isoeng
dc.page.final326
dc.page.initial305
dc.publisherCambridge University Press
dc.relation.projectIDPB86-0112-C0202
dc.relation.projectIDSC1-0019-C
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.keywordEquation
dc.subject.keywordRN
dc.subject.keywordset of nonnegative
dc.subject.keywordglobal and radial solutions
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleRadial solutions of a semilinear elliptic problem
dc.typejournal article
dc.volume.number118
dcterms.referencesR. Bellman. Stability theory of differential equations (New York: Dover, 1953). H. Brezis. Semilinear equations in RN without conditions at infinity. Appl. Math. Optim. 12 (1984), 271-282. T. Gallouët and J. M. Morel. The equation -Δu + |u|α-1u = f for 0 ≤ α ≤ 1. J. Nonlinear Anal. 11 (1987), 893-912. M. A. Herrero and J. J. L. Velázquez. On the dynamics of a semilinear heat equation with strong absorption. Comm. Partial Differential Equations 14 (1989), 1653-1715. M. Murata. Structure of positive solutions to (-Δ + V)u=0 in RN. Duke Math J. 53 (1986), 869-943.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero48.pdf
Size:
866.16 KB
Format:
Adobe Portable Document Format

Collections