Diagenetic Origin of Bipyramidal Quartz and Hydrothermal Aragonites within the Upper Triassic Saline Succession of the Iberian Basin: Implications for Interpreting the Burial–Thermal Evolution of the Basin

Research Projects
Organizational Units
Journal Issue
Within the Upper Triassic successions in the Iberian Basin (Spain), the occurrence of both idiomorphic bipyramidal quartz crystals as well as pseudohexagonal aragonite crystals are related to mudstone and evaporite bearing sequences. Bipyramidal-euhedral quartz crystals occur commonly at widespread locations and similar idiomorphic crystals have been described in other formations and ages from Europe, America, Pakistan, and Africa. Similarly, pseudohexagonal aragonite crystals are located at three main sites in the Iberian Range and are common constituents of deposits of this age in France, Italy, and Morocco. This study presents a detailed description of the geochemical and mineralogical characteristics of the bipyramidal quartz crystals to decipher their time of formation in relation to the diagenetic evolution of the sedimentary succession in which they formed. Petrographic and scanning electron microscopy (SEM) analyses permit the separation of an inner part of quartz crystals with abundant anhydrite and organic-rich inclusions. This inner part resulted from near-surface recrystallization (silicification) of an anhydrite nodule, at temperatures that were <40 °C. Raman spectra reveal the existence of moganite and polyhalite, which reinforces the evaporitic character of the original depositional environment. The external zone of the quartz contains no anhydrite or organic inclusions and no signs of evaporites in the Raman spectra, being interpreted as quartz overgrowths formed during burial, at temperatures between 80 to 90 °C. Meanwhile, the aragonite that appears in the same Keuper deposits was precipitated during the Callovian, resulting from the mixing of hydrothermal fluids with infiltrated waters of marine origin, at temperatures ranging between 160 and 260 °C based on fluids inclusion analyses. Although both pseudohexagonal aragonite crystals and bipyramidal quartz appear within the same succession, they formed at different phases of the diagenetic and tectonic evolution of the basin: bipyramidal quartz crystals formed in eo-to mesodiagenetic environments during a rifting period at Upper Triassic times, while aragonite formed 40 Ma later as a result of hydrothermal fluids circulating through normal faults.