Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Grothendieck ring of varieties with finite groups actions

Loading...
Thumbnail Image

Full text at PDC

Publication date

2019

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge University Press
Citations
Google Scholar

Citation

Abstract

We define a Grothendieck ring of varieties with finite groups actions and show that the orbifold Euler characteristic and the Euler characteristics of higher orders can be defined as homomorphisms from this ring to the ring of integers. We describe two natural [landa]-structures on the ring and the corresponding power structures over it and show that one of these power structures is effective. We define a Grothendieck ring of varieties with equivariant vector bundles and show that the generalized ("motivic") Euler characteristics of higher orders can be defined as homomorphisms from this ring to the Grothendieck ring of varieties extended by powers of the class of the complex affine line. We give an analogue of the Macdonald type formula for the generating series of the generalized higher order Euler characteristics of wreath products.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections