Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Grothendieck ring of varieties with finite groups actions

dc.contributor.authorGusein Zade, Sabir Medgidovich
dc.contributor.authorLuengo, I.
dc.contributor.authorMelle Hernández, Alejandro
dc.date.accessioned2023-06-17T12:44:47Z
dc.date.available2023-06-17T12:44:47Z
dc.date.issued2019-03-08
dc.description.abstractWe define a Grothendieck ring of varieties with finite groups actions and show that the orbifold Euler characteristic and the Euler characteristics of higher orders can be defined as homomorphisms from this ring to the ring of integers. We describe two natural [landa]-structures on the ring and the corresponding power structures over it and show that one of these power structures is effective. We define a Grothendieck ring of varieties with equivariant vector bundles and show that the generalized ("motivic") Euler characteristics of higher orders can be defined as homomorphisms from this ring to the Grothendieck ring of varieties extended by powers of the class of the complex affine line. We give an analogue of the Macdonald type formula for the generating series of the generalized higher order Euler characteristics of wreath products.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74927
dc.identifier.doi10.1017/S001309151900004X
dc.identifier.issn0013-0915
dc.identifier.officialurlhttps://doi.org/10.1017/S001309151900004X
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12884
dc.issue.number4
dc.journal.titleProceedings of the Edinburgh Mathematical Society,
dc.language.isoeng
dc.page.final948
dc.page.initial925
dc.publisherCambridge University Press
dc.relation.projectIDMTM2016-76868-C2-1-P
dc.rights.accessRightsopen access
dc.subject.cdu512
dc.subject.keywordFinite group actions
dc.subject.keywordComplex quasi-projective varieties
dc.subject.keywordGrothendieck rings
dc.subject.keywordLambda-structure
dc.subject.keywordPower structure
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleGrothendieck ring of varieties with finite groups actions
dc.typejournal article
dc.volume.number62
dspace.entity.typePublication
relation.isAuthorOfPublicationc5f952f6-669f-4e3d-abc8-76d6ac56119b
relation.isAuthorOfPublication.latestForDiscoveryc5f952f6-669f-4e3d-abc8-76d6ac56119b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
melle_grothendieckring.pdf
Size:
362.64 KB
Format:
Adobe Portable Document Format

Collections