Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies

Research Projects
Organizational Units
Journal Issue
We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV – the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.
© 2016 IOP Publishing Ltd. Artículo firmado por 157 autores. The MAGIC Collaboration thanks the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2012-39502), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat à l’Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucl´eaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d’Études Spatiales in France.
[1] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta, 6 (1933) 110. [2] H. W. Babcock, The rotation of the Andromeda Nebula, Lick Observatory Bulletin, 19 (1939) 41. [3] P. Salucci, M. Persic, Dark Halos around Galaxies, in Dark and visible matter in Galaxies, ASP. Conf. Ser., Vol. 117 (1997) 1. [arXiv:astro-ph/9703027]. [4] C. L. Bennett, et al., First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results, Astrophys. J. Suppl., 148 (2003) 1 [arXiv:astro-ph/0302207]. [5] P. A. R. Ade, et al. Planck 2015 results. XIII. Cosmological parameters. [arXiv:1502.01589]. [6] P. Hut, Limits on masses and number of neutral weakly interacting particles, Phys. Lett., B69 (1977) 85. [7] G. Gelmini, P. Gondolo, DM production mechanisms, in “Particle Dark Matter: Observations, Models and Searches”, G. Bertone (Editor). Cambridge U. Press, Cambridge 2010, Chap.7, p.121. [arXiv:1009.3690]. [8] F. Aharonian, et al., H.E.S.S. observations of the Galactic Center region and their possible dark matter interpretation , Phys. Rev. Lett., 97 (2006) 221102. [arXiv:astro-ph/0610509]. [9] J. Albert, et al., Observation of Gamma Rays from the Galactic Center with the MAGIC telescope, Astrophys. J., 638 (2006) L101. [arXiv:astro-ph/0512469]. [10] A. Archer, et al., Very-High Energy Observations of the Galactic Center Region by VERITAS in 2010-2012, Astrophys. J., 790 (2014) 149. [arXiv:1406.6383]. [11] A. Abramowski, et al., Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S. . Phys. Rev. Lett., 106 (2011) 161301. [arXiv:1103.3266]. [12] M. Ackermann, et al. Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements, Astrophys. J., 761 (2012) 91. [arXiv:1205.6474]. [13] A. Abramowski, et al., Search for photon line-like signatures from Dark Matter annihilations with H.E.S.S, Phys. Rev. Lett., 110 (2013) 041301. [arXiv:1301.1173]. [14] M. Ackermann, et al. Search for gamma-ray spectral lines with the Fermi Large Area Telescope and dark matter implications, Phys. Rev., D88 (2013) 082002. [arXiv:1305.5597]. [15] A. U. Abeysekara, et al., The Sensitivity of HAWC to High-Mass Dark Matter Annihilations, Phys. Rev., D90 (2014) 122002. [arXiv:1405.1730]. [16] R. Abbasi, et al. Search for Dark Matter from the Galactic Halo with the IceCube Neutrino Telescope, Phys. Rev., D84 (2011) 022004. [arXiv:1101.3349]. [17] S. Adrián-Martínez, Search of Dark Matter Annihilation in the Galactic Centre using the ANTARES Neutrino Telescope. [arXiv:1505.04866]. [18] J. Aleksi´c, et al., MAGIC Gamma-Ray Observation of the Perseus Galaxy Cluster, Astrophys. J., 710 (2010) 634. [arXiv:0909.3267]. [19] A. Abramowski, et al., Erratum to “Search for Dark Matter Annihilation Signals from the Fornax Galaxy Cluster with H.E.S.S”, Astrophys. J., 783 (2014) 63. [20] T. Arlen, et al., Constraints on Cosmic Rays, Magnetic Fields, and Dark Matter from Gamma-Ray Observations of the Coma Cluster of Galaxies with VERITAS and Fermi, Astrophys. J., 757 (2012) 123. [arXiv:1208.0676]. [21] M. Ackermann, et al. Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope, JCAP, 05 (2010) 025. [arXiv:1002.2239]. [22] M. G. Aartsen, et al., An IceCube Search for Dark Matter Annihilation in Nearby Galaxies and Galaxy Clusters, Phys. Rev., D88 (2013) 122001. [arXiv:1307.3473]. [23] F. Aharonian, et al., Erratum to “Observations of the Sagittarius Dwarf galaxy by the H.E.S.S. experiment and search for a Dark Matter signal”, Astropart. Phys., 33 (2010) 274. [24] F. Aharonian, et al., A search for a dark matter annihilation signal towards the Canis Major overdensity with H.E.S.S, Astrophy. J., 691 (2009) 175. [arXiv:0809.3894]. [25] A. Abramowski, et al., H.E.S.S. constraints on Dark Matter annihilations towards the Sculptor and Carina Dwarf Galaxies, Astropart. Phys., 34 (2011) 608. [arXiv:1012.5602]. [26] A. Abramowski, et al., Search for dark matter annihilation signatures in H.E.S.S. observations of Dwarf Spheroidal Galaxies, Phys. Rev. D, in press (2015). [arXiv:1410.2589]. [27] V. A. Acciari, et al., VERITAS Search for VHE Gamma-ray Emission from Dwarf Spheroidal Galaxies. Astrophys. J., 720 (2010) 1174. [arXiv:1006.5955]. [28] E. Aliu et al., Erratum to “VERITAS deep observations of the dwarf spheroidal galaxy Segue 1”. Phys. Rev. D91 (2015) 129903(E). [29] J. Albert, et al., Upper limit for gamma-ray emission above 140 GeV from the dwarf spheroidal galaxy Draco. Astrophys. J., 679 (2008) 428. [arXiv:0711.2574]. [30] J. Albert, et al., Upper Limits on the VHE Gamma-Ray Emission from the Willman 1 Satellite Galaxy with the Magic Telescope. Astrophys. J., 697 (2009) 1299. [arXiv:0810.3561]. [31] J. Aleksi´c, et al., Searches for dark matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope, JCAP, 06 (2011) 035. [arXiv:1103.0477]. [32] J. Aleksi´c, et al., Optimized dark matter searches in deep observations of Segue 1 with MAGIC, JCAP, 02 (2014) 008. [arXiv:1312.1535]. [33] M. Ackermann, et al., Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope, Phys. Rev., D89 (2014) 042001 [arXiv:1310.0828]. [34] M. Ackermann, et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi-LAT Data. [arXiv:1503.02641]. [35] M. Ackermann, el al. Limits on Dark Matter Annihilation Signals from the Fermi LAT 4-year Measurement of the Isotropic Gamma-Ray Background. [arXiv:1501.05464]. [36] M. Ackermann, et al. Search for Dark Matter Satellites using Fermi-LAT, Astrophys. J., 747 (2012) 121 [arXiv:1201.2691]. [37] M. G. Aartsen, et al., Search for Dark Matter Annihilations in the Sun with the 79-string IceCube Detector Phys. Rev. Lett., 110 (2013) 131302. [arXiv:1212.4097]. [38] J. Aleksi´c, J. Rico, M. Martínez, Optimized analysis method for indirect dark matter searches with Imaging Air Cherenkov Telescopes, JCAP, 10 (2012) 032 [arXiv:1209.5589]. [39] V. Springel, et al., The Aquarius Project: the subhaloes of galactic haloes,Mon. Not. Roy. Astron. Soc., 391 (2008) 1685. [arXiv:0809.0898]. [40] J. Diemand, et al., Clumps and streams in the local dark matter distribution, Nature, 454 (2008) 735 [arXiv:0805.1244]. [41] L. E. Strigari, Galactic searches for dark matter, Phys. Rep., 531 (2013) 1. [arXiv:1211.7090]. [42] G. D. Martínez, A Robust Determination of Milky Way Satellite Properties using Hierarchical Mass Modeling. Mon. Not. Roy. Astron. Soc., 451 (2015) 2524. [arXiv:1309.2641]. [43] A. Geringer-Sameth, S. M. Koushiappas, M. Walker, Dwarf galaxy annihilation and decay emission profiles for dark matter experiments, Astrophys. J., 801 (2015) 74 [arXiv:1408.0002]. [44] V. Bonnivard, et al., Dark matter annihilation and decay in dwarf spheroidal galaxies: The classical and ultrafaint dSphs. Mon. Not. Roy. Astron. Soc., 453 (2015) 849 [arXiv:1504.02048]. [45] J. Aleksi´c, et al., The major upgrade of the MAGIC telescopes, Part II: The achieved physics performance using the Crab Nebula observations, Astropart. Phys., 72 (2016) 76 [arXiv:1409.5594]. [46] J. Aleksi´c, et al., The major upgrade of the MAGIC telescopes, Part I: The hardware improvements and the commissioning of the system, Astropart. Phys., 72 (2016) 61 [arXiv:1409.6073]. [47] W. B. Atwood, et al., The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission, Astrophys. J., 697 (2009) 1071. [arXiv:0902.1089]. [48] M. Ackermann, et al. [Fermi-LAT Collaboration], The Fermi Large Area Telescope On Orbit: Event Classification, Instrument Response Functions, and Calibration, Astrophys. J. Suppl., 203, 4 (2012). [arXiv:1206.1896]. [49] F. Acero, et al., Fermi Large Area Telescope Third Source Catalog, Astrophys. J. Suppl., 218, 23 (2015 [arXiv:1501.02003]. [50] T. Sjöstrand, et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun., 191 (2015) 159. [arXiv:1410.3012]. [51] J. F. Navarro, C. S. Frenk, S. D. White, A Universal Density Profile from Hierarchical Clustering, Astrophys. J., 490 (1997) 493. [arXiv:astro-ph/9611107]. [52] K. A. Olive, et al., The Review of Particle Physics, Chin. Phys., C38 (2014) 090001. [53] J. Aleksi´c, Optimized Dark Matter Searches in Deep Observations of Segue 1 with MAGIC. Springer Theses (2016). DOI:10.1007/978-3-319-23123-5. [54] G. Steigman, B. Dasgupta, J. F. Beacom, Precise relic WIMP abundance and its impact on searches for dark matter annihilation Phys. Rev., D86 (2012) 023506 [arXiv:1204.3622]. [55] R. Essig, et al., Indirect Dark Matter Detection Limits from the Ultra-Faint Milky Way Satellite Segue 1, Phys. Rev., D82 (2010) 123503. [arXiv:1007.4199]. [56] W. A. Rolke, A. M. López, J. Conrad, Limits and confidence intervals in the presence of nuisance parameters, Nucl. Instrum. Meth., A551 (2005) 493. [arXiv:physics/0403059]. [57] G. J. Feldman, R. D. Cousins, A Unified Approach to the Classical Statistical Analysis of Small Signals, Phys. Rev., D57 (1998) 3873. [arXiv:physics/9711021]. [58] M. Doro, et al., Dark Matter and Fundamental Physics with the Cherenkov Telescope Array, Astropart. Phys., 43 (2013) 189. [arXiv:1208.5356]. [59] A. A. Moiseev, et al., Dark Matter Search Perspectives with GAMMA-400, in Proc. of the 33rd International Cosmic Ray Conference 2013, Brazil, Rio de Janeiro. [arXiv:1307.2345]. [60] Y. Dong, et al., DAMPE silicon tracker on-board data compression algorithm. [arXiv:1503.00415]. [61] B. Dasgupta, R. Laha, Neutrinos in IceCube/KM3NeT as probes of Dark Matter Substructures in Galaxy Clusters, Phys. Rev., D86 (2012) 093001. [arXiv:1206.1322].