Weak compactness and representation in variable exponent Lebesgue spaces on infinite measure spaces

dc.contributor.authorHernández, Francisco L.
dc.contributor.authorRuiz Bermejo, César
dc.contributor.authorSanchiz Alonso, Mauro
dc.date.accessioned2023-06-22T10:54:29Z
dc.date.available2023-06-22T10:54:29Z
dc.date.issued2022-07-16
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2022)
dc.description.abstractRelative weakly compact sets and weak convergence in variable exponent Lebesgue spaces L p(·) () for infinite measure spaces (, μ) are characterized. Criteria recently obtained in [14] for finite measures are here extended to the infinite measure case. In particular, it is showed that the inclusions between variable exponent Lebesgue spaces for infinite measures are never L-weakly compact. A lattice isometric representation of L p(·) () as a variable exponent space Lq(·) (0, 1) is given.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74087
dc.identifier.doi10.1007/s13398-022-01298-2
dc.identifier.issn1578-7303
dc.identifier.officialurlhttps://doi.org/10.1007/s13398-022-01298-2
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71870
dc.issue.number4
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
dc.language.isoeng
dc.publisherSpringer Nature
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleWeak compactness and representation in variable exponent Lebesgue spaces on infinite measure spaces
dc.typejournal article
dc.volume.number116
dspace.entity.typePublication
relation.isAuthorOfPublication99883408-190b-4f61-be14-23d8126a2710
relation.isAuthorOfPublication85c920a1-03fc-4328-85bf-2e1a4eabdcf3
relation.isAuthorOfPublication.latestForDiscovery99883408-190b-4f61-be14-23d8126a2710

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s13398-022-01298-2.pdf
Size:
337.59 KB
Format:
Adobe Portable Document Format

Collections