An Optical Technique for Mapping Microviscosity Dynamics in Cellular Organelles
| dc.contributor.author | Chambers, Joseph E. | |
| dc.contributor.author | Kubánková, Markéta | |
| dc.contributor.author | Huber, Roland G. | |
| dc.contributor.author | López Duarte, Ismael | |
| dc.contributor.author | Avezov, Edward | |
| dc.contributor.author | Bond, Peter J. | |
| dc.contributor.author | Marciniak, Stefan J. | |
| dc.contributor.author | Kuimova, Marina K. | |
| dc.date.accessioned | 2025-01-22T14:06:44Z | |
| dc.date.available | 2025-01-22T14:06:44Z | |
| dc.date.issued | 2018-04-12 | |
| dc.description.abstract | Microscopic viscosity (microviscosity) is a key determinant of diffusion in the cell and defines the rate of biological processes occurring at the nanoscale, including enzyme-driven metabolism and protein folding. Here we establish a rotor-based organelle viscosity imaging (ROVI) methodology that enables real-time quantitative mapping of cell microviscosity. This approach uses environment-sensitive dyes termed molecular rotors, covalently linked to genetically encoded probes to provide compartment-specific microviscosity measurements via fluorescence lifetime imaging. ROVI visualized spatial and temporal dynamics of microviscosity with suborganellar resolution, reporting on a microviscosity difference of nearly an order of magnitude between subcellular compartments. In the mitochondrial matrix, ROVI revealed several striking findings: a broad heterogeneity of microviscosity among individual mitochondria, unparalleled resilience to osmotic stress, and real-time changes in microviscosity during mitochondrial depolarization. These findings demonstrate the use of ROVI to explore the biophysical mechanisms underlying cell biological processes. | |
| dc.description.department | Depto. de Química en Ciencias Farmacéuticas | |
| dc.description.faculty | Fac. de Farmacia | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Alpha-1 Foundation | |
| dc.description.sponsorship | Engineering & Physical Sciences Research Council | |
| dc.description.status | pub | |
| dc.identifier.citation | Chambers JE, Kubánková M, Huber RG, López-Duarte I, Avezov E, Bond PJ, et al. An optical technique for mapping microviscosity dynamics in cellular organelles. ACS Nano [Internet]. 22 de mayo de 2018 [citado 22 de enero de 2025];12(5):4398-407. Disponible en: https://pubs.acs.org/doi/10.1021/acsnano.8b00177 | |
| dc.identifier.doi | 10.1021/acsnano.8b00177 | |
| dc.identifier.issn | 1936-0851 | |
| dc.identifier.issn | 1936-086X | |
| dc.identifier.officialurl | https://doi.org/10.1021/acsnano.8b00177 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/115607 | |
| dc.issue.number | 5 | |
| dc.journal.title | ACS Nano | |
| dc.language.iso | eng | |
| dc.page.final | 4407 | |
| dc.page.initial | 4398 | |
| dc.publisher | American Chemical Society | |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
| dc.rights.accessRights | open access | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.cdu | 615.31 | |
| dc.subject.cdu | 615:54 | |
| dc.subject.keyword | microviscosity | |
| dc.subject.keyword | diffusion | |
| dc.subject.keyword | organelle | |
| dc.subject.keyword | cell biophysics | |
| dc.subject.keyword | fluorescence | |
| dc.subject.keyword | FLIM | |
| dc.subject.keyword | molecular rotors | |
| dc.subject.ucm | Química farmaceútica | |
| dc.subject.unesco | 23 Química | |
| dc.title | An Optical Technique for Mapping Microviscosity Dynamics in Cellular Organelles | |
| dc.type | journal article | |
| dc.type.hasVersion | VoR | |
| dc.volume.number | 12 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | dec7fdad-6ad2-427a-8113-8d81e6becccb | |
| relation.isAuthorOfPublication.latestForDiscovery | dec7fdad-6ad2-427a-8113-8d81e6becccb |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- An Optical Technique for MappingMicroviscosity Dynamics in Cellular Organelles.pdf
- Size:
- 7.51 MB
- Format:
- Adobe Portable Document Format


