An Optical Technique for Mapping Microviscosity Dynamics in Cellular Organelles

dc.contributor.authorChambers, Joseph E.
dc.contributor.authorKubánková, Markéta
dc.contributor.authorHuber, Roland G.
dc.contributor.authorLópez Duarte, Ismael
dc.contributor.authorAvezov, Edward
dc.contributor.authorBond, Peter J.
dc.contributor.authorMarciniak, Stefan J.
dc.contributor.authorKuimova, Marina K.
dc.date.accessioned2025-01-22T14:06:44Z
dc.date.available2025-01-22T14:06:44Z
dc.date.issued2018-04-12
dc.description.abstractMicroscopic viscosity (microviscosity) is a key determinant of diffusion in the cell and defines the rate of biological processes occurring at the nanoscale, including enzyme-driven metabolism and protein folding. Here we establish a rotor-based organelle viscosity imaging (ROVI) methodology that enables real-time quantitative mapping of cell microviscosity. This approach uses environment-sensitive dyes termed molecular rotors, covalently linked to genetically encoded probes to provide compartment-specific microviscosity measurements via fluorescence lifetime imaging. ROVI visualized spatial and temporal dynamics of microviscosity with suborganellar resolution, reporting on a microviscosity difference of nearly an order of magnitude between subcellular compartments. In the mitochondrial matrix, ROVI revealed several striking findings: a broad heterogeneity of microviscosity among individual mitochondria, unparalleled resilience to osmotic stress, and real-time changes in microviscosity during mitochondrial depolarization. These findings demonstrate the use of ROVI to explore the biophysical mechanisms underlying cell biological processes.
dc.description.departmentDepto. de Química en Ciencias Farmacéuticas
dc.description.facultyFac. de Farmacia
dc.description.refereedTRUE
dc.description.sponsorshipAlpha-1 Foundation
dc.description.sponsorshipEngineering & Physical Sciences Research Council
dc.description.statuspub
dc.identifier.citationChambers JE, Kubánková M, Huber RG, López-Duarte I, Avezov E, Bond PJ, et al. An optical technique for mapping microviscosity dynamics in cellular organelles. ACS Nano [Internet]. 22 de mayo de 2018 [citado 22 de enero de 2025];12(5):4398-407. Disponible en: https://pubs.acs.org/doi/10.1021/acsnano.8b00177
dc.identifier.doi10.1021/acsnano.8b00177
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.officialurlhttps://doi.org/10.1021/acsnano.8b00177
dc.identifier.urihttps://hdl.handle.net/20.500.14352/115607
dc.issue.number5
dc.journal.titleACS Nano
dc.language.isoeng
dc.page.final4407
dc.page.initial4398
dc.publisherAmerican Chemical Society
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu615.31
dc.subject.cdu615:54
dc.subject.keywordmicroviscosity
dc.subject.keyworddiffusion
dc.subject.keywordorganelle
dc.subject.keywordcell biophysics
dc.subject.keywordfluorescence
dc.subject.keywordFLIM
dc.subject.keywordmolecular rotors
dc.subject.ucmQuímica farmaceútica
dc.subject.unesco23 Química
dc.titleAn Optical Technique for Mapping Microviscosity Dynamics in Cellular Organelles
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublicationdec7fdad-6ad2-427a-8113-8d81e6becccb
relation.isAuthorOfPublication.latestForDiscoverydec7fdad-6ad2-427a-8113-8d81e6becccb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An Optical Technique for MappingMicroviscosity Dynamics in Cellular Organelles.pdf
Size:
7.51 MB
Format:
Adobe Portable Document Format

Collections