Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An Optical Technique for Mapping Microviscosity Dynamics in Cellular Organelles

Citation

Chambers JE, Kubánková M, Huber RG, López-Duarte I, Avezov E, Bond PJ, et al. An optical technique for mapping microviscosity dynamics in cellular organelles. ACS Nano [Internet]. 22 de mayo de 2018 [citado 22 de enero de 2025];12(5):4398-407. Disponible en: https://pubs.acs.org/doi/10.1021/acsnano.8b00177

Abstract

Microscopic viscosity (microviscosity) is a key determinant of diffusion in the cell and defines the rate of biological processes occurring at the nanoscale, including enzyme-driven metabolism and protein folding. Here we establish a rotor-based organelle viscosity imaging (ROVI) methodology that enables real-time quantitative mapping of cell microviscosity. This approach uses environment-sensitive dyes termed molecular rotors, covalently linked to genetically encoded probes to provide compartment-specific microviscosity measurements via fluorescence lifetime imaging. ROVI visualized spatial and temporal dynamics of microviscosity with suborganellar resolution, reporting on a microviscosity difference of nearly an order of magnitude between subcellular compartments. In the mitochondrial matrix, ROVI revealed several striking findings: a broad heterogeneity of microviscosity among individual mitochondria, unparalleled resilience to osmotic stress, and real-time changes in microviscosity during mitochondrial depolarization. These findings demonstrate the use of ROVI to explore the biophysical mechanisms underlying cell biological processes.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections