Almost classical solutions of Hamilton-Jacobi equations
dc.contributor.author | Deville, Robert | |
dc.contributor.author | Jaramillo Aguado, Jesús Ángel | |
dc.date.accessioned | 2023-06-20T09:39:17Z | |
dc.date.available | 2023-06-20T09:39:17Z | |
dc.date.issued | 2008 | |
dc.description.abstract | We study the existence of everywhere differentiable functions which are almost everywhere solutions of quite general Hamilton-Jacobi equations on open subsets of R(d) or on d-dimensional manifolds whenever d >= 2. In particular, when M is a Riemannian manifold, we prove the existence of a differentiable function a on M which satisfies the Eikonal equation parallel to del u(x)parallel to(x) = 1 almost everywhere on M. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16596 | |
dc.identifier.doi | 10.4171/RMI/564 | |
dc.identifier.issn | 0213-2230 | |
dc.identifier.officialurl | http://projecteuclid.org/euclid.rmi/1228834302 | |
dc.identifier.relatedurl | http://projecteuclid.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50121 | |
dc.issue.number | 3 | |
dc.journal.title | Revista Matemática Iberoamericana | |
dc.language.iso | eng | |
dc.page.final | 1010 | |
dc.page.initial | 989 | |
dc.publisher | Univ Autónoma Madrid | |
dc.relation.projectID | MTM2006-03531 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.55 | |
dc.subject.keyword | Riemannian-Manifolds | |
dc.subject.keyword | Gradient Problem | |
dc.subject.keyword | Hamilton-Jacobi Equations | |
dc.subject.keyword | Eikonal Equation On Manifolds | |
dc.subject.keyword | Almost Everywhere Solutions | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.ucm | Análisis matemático | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 12 Matemáticas | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Almost classical solutions of Hamilton-Jacobi equations | |
dc.type | journal article | |
dc.volume.number | 24 | |
dcterms.references | D. Azagra, J. Ferrera and F. López-Mesas, Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220 (2005) 304–361. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques el Applications, 17, Springer-Verlag (1994). M. T. Benameur, Triangulations and the stability theorem for foliations. Pacific J. of Math. 179 (1997) 221–239. Z. Buczolich, Solution to the gradient problem of C. E. Weil. Revista. Mat. Iberoamericana 21 (2005) 889–910. M. G. Crandall, H. Ishii and P. L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1–67. R. Deville and É. Matheron, Infinite games, Banach space geometry and the eikonal equation. To appear in Proc. London Math. Soc. J. Malý, M. Zelený, A note on Buczolich’s solution of the Weil gradient problem. Preprint. C. Mantegazza and A. C. Mennucci, Hamilton-Jacobi Equations and Distance Functions on Riemannian Manifods. Appl. Math. and Optim. 47 (2003) 1–25. C. E. Weil, On properties of derivatives. Trans. Amer. Math. Soc. 114 (1965) 363–376. H. Whitney, Geometric integration theory. Princeton Univ. Press, 19 (1957). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8b6e753b-df15-44ff-8042-74de90b4e3e9 | |
relation.isAuthorOfPublication.latestForDiscovery | 8b6e753b-df15-44ff-8042-74de90b4e3e9 |
Download
Original bundle
1 - 1 of 1